
Architecting System Performance all slides
by Gerrit Muller

TNO-ESI

Abstract

Architecting System Performance applies and elaborates the course Architectural
Reasoning Using Conceptual Modeling to architect performance of systems. We
teach an architecting method based on many views and fast iteration of the views.
Visual models, functional models, and mathematical models in all views are the
means to communicate about the system, to discuss specification and design
choices, to reason about consequences, and to make decisions.

Distribution

This article or presentation is written as part of the Gaudí
project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is
pursued by an open creation process. This document
is published as intermediate or nearly mature version to
get feedback. Further distribution is allowed as long as
the document remains complete and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.4

design space

resource management
process, transport, store, in/out

internal logistics
concurrency, processes

processing
algorithms, machining, ...

Devilish details in design space may have large impact on performance.

Many detailed design decisions determine system performance.

system

performance

Architecting System Performance; Course Overview
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Course overview of the course Architecting System Performance.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.3

1. Course introduction

4. Connecting breadth and depth

3. Course didactics

2. Managing system performance

5. Performance Modeling

6. Level of Abstraction

7. Visualizing Dynamic Behavior

8. Emerging Behaviour

13. Reasoning Approach

14. Defining Performance

15. Measuring Performance

12. Model Analysis

11. Applications and Variations

9. Budgeting

16. Resource Management

17. Greedy and Lazy Pattern

10. Modeling Paradigms

18.Scheduling

19. Robust Performance

time-oriented performance

20. Bloating, Waste, and Value

Nuggets Architecting System Performance

1. Course introduction

4. Connecting breadth and depth

3. Course didactics

2. Managing system performance

5. Performance Modeling

6. Level of Abstraction

7. Visualizing Dynamic Behavior

8. Emerging Behaviour

13. Reasoning Approach

14. Defining Performance

15. Measuring Performance

12. Model Analysis

11. Applications and Variations

9. Budgeting

16. Resource Management

17. Greedy and Lazy Pattern

10. Modeling Paradigms

18.Scheduling

19. Robust Performance

time-oriented performance

20. Bloating, Waste, and Value

Architecting System Performance; Course Overview
3 Gerrit Muller

version: 0.3
July 3, 2023

ASPCOnuggets

Assignments in Face-to-Face Module

supersystem system subsystem

1. sketch the problem
goal use case

key performance

parameters

main

concepts

critical

technologies

2. make conceptual model of the current

situation

· model dynamic behavior

· model 0-order kpp using functions (as

simple as possible)

· quantify contribution to kpp using

observed data

3. explore customer and business relevance

· develop story

· model workflow and performance

· model customer value as function of kpp

4. make conceptual model of potential

solutions

· model the foreseen solution

· model & compare 2 alternative solutions

5. list questions and uncertainties, reformulate problem and goal, and formulate gaps and options

6. develop an elevator pitch to report you findings and recommendations to management

0. elevator case

Architecting System Performance; Course Overview
4 Gerrit Muller

version: 0.3
July 3, 2023

MAOassignments

Architecting System Performance; Course Material
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Listing the course material for Architecting System Performance

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: planned
version: 0.1

logo
TBD

Colofon

The ASP
TM

 course is partially derived from the

EXARCH course developed at Philips CTT by

Ton Kostelijk and Gerrit Muller.

Extensions and additional slides have been

developed at ESI by Teun Hendriks, Roland

Mathijssen and Gerrit Muller.

Architecting System Performance; Course Material
6 Gerrit Muller

version: 0.1
July 3, 2023

PERFcolofon

Elevator: Hands-on Intro to Performance Modeling

core

Physical Models of an Elevator

http://www.gaudisite.nl/info/ElevatorPhysicalModel.info.html

optional

Teaching conceptual modeling at multiple system levels using multiple views

http://www.gaudisite.nl/CIRP2014_Muller_TeachingConceptualModeling.pdf

Understanding the human factor by making understandable visualizations

http://www.gaudisite.nl/info/UnderstandingHumanFactorVisualizations.info.html

Architecting System Performance; Course Material
7 Gerrit Muller

version: 0.1
July 3, 2023

ASPmaterialElevator

Course Didactics

core

Architecting System Performance; Course Didactics

http://www.gaudisite.nl/info/ASPcourseDidactics.info.html

optional

DSRP: https://en.wikipedia.org/wiki/DSRP

Assumptions: “Systems Engineering and Critical Reflection: The Application of

Brookfield and Goffman to the Common Experiences of Systems Engineers” by

Chucks Madhav; proceedings of INCOSE 2016, in Edinburgh, GB

70/20/10:

http://charles-jennings.blogspot.nl/

https://www.trainingindustry.com/wiki/entries/the-702010-model-for-learning-and-

development.aspx

http://jarche.com/2015/11/the-bridge-from-education-to-experience/

Reflection: “The Reflective Practitioner: How Professionals Think In Action” by

Donald Schon, ISBN-10: 0465068782, Basic Books USA

Assumptions and beliefs:

https://pivotalthinking.wordpress.com/tag/ladder-of-inference/

http://stwj.systemswiki.org/?p=1120

Architecting System Performance; Course Material
8 Gerrit Muller

version: 0.1
July 3, 2023

ASPmaterialDidactics

Greedy and Lazy Patterns

core

Architecting System Performance; Greedy and Lazy Patterns

http://gaudisite.nl/info/ASPgreedyAndLazy.info.html

optional

Fundamentals of Technology

http://gaudisite.nl/MAfundamentalsOfTechnologyPaper.pdf

Architecting System Performance; Course Material
9 Gerrit Muller

version: 0.1
July 3, 2023

ASPmaterialGreedyLazy

Measuring

core

Architecting System Performance; Measuring

http://www.gaudisite.nl/info/ASPmeasuring.info.html

optional

Performance Method Fundamentals

http://www.gaudisite.nl/PerformanceMethodFundamentalsPaper.pdf

Measurement issues; From gathering numbers to gathering knowledge by Ton

Kostelijk http://www.gaudisite.nl/MeasurementExecArchSlides.pdf

Modeling and Analysis: Measuring

http://www.gaudisite.nl/MAmeasuringPaper.pdf

Exploring an existing code base: measurements and instrumentation

http://www.gaudisite.nl/info/ExploringByMeasuringInstrumenting.info.html

Architecting System Performance; Course Material
10 Gerrit Muller

version: 0.1
July 3, 2023

ASPmaterialMeasuring

Architecting System Performance; Managing System
Performance

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation presents the ideas behind the course Architecting System
Performance. A number of frameworks and mental models show the context of
this course and the approach to performance advocated in this course.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.2

understanding exploration optimization verification

Explorative

what is needed?

what can be achieved?
Defensive

what are the risks?

will the system perform well?

how to mitigate shortcomings?

Architecture Top View

customer value

proposition

business

proposition

system

requirements

system design &

technology

drives dr
iv
es

d
ri
v
e

s

e
n

a
b

le
s

enables en
ab

le
s

Architecting System Performance; Managing System Performance
12 Gerrit Muller

version: 0.2
July 3, 2023

ARCVtopView

Performance Playing Field

customer value

proposition

business

proposition

system

requirements

system design

drives dr
iv
es

d
ri
v
e

s

e
n

a
b

le
s

enables en
ab

le
s

consumer experience

enterprise performance:

enterprise productivity

enterprise throughput

enterprise response time

competitiveness

service response time

service cost

system performance:

system productivity

system throughput

system response time

technical concepts for:

resource management

internal logistics

processing

Performance attributes

require means for analysis

evaluation, and creation of

structure (parts and interfaces)

and dynamic behavior (functions)

at all levels.

Hence, we need conceptual

modeling at all levels.

Architecting System Performance; Managing System Performance
13 Gerrit Muller

version: 0.2
July 3, 2023

ASPCIplayingField

What and Why to Model

business

key drivers

risks

customer

key drivers

risks

business as

usual

(no modeling)

obvious

historic data

competitive data

modeling
feasibility

communication

risk mitigation

exploration

validation

purpose and type of model

depend on project life cycle

type of model and views

depend on purpose

how well is the customer served?

how credible becomes the solution?

how much are time and effort reduced?

how much is the risk reduced?

how much is the solution improved?

how much effort is needed to create model(s)?

how much effort is needed to use and maintain model(s)?

how much time is needed to obtain useful result?

decision factors:

accuracy of model

credibility of results

level of abstraction

working range

calibration of model

robustness of model

time to first results and feedback

effort

evolvability

(adaptation to new questions)

Architecting System Performance; Managing System Performance
14 Gerrit Muller

version: 0.2
July 3, 2023

MAOwhyWhatWhen

Modeling Evolves over Time

understanding exploration optimization verification

project

phase

purpose of

the model

type of the

model
determines determines

Architecting System Performance; Managing System Performance
15 Gerrit Muller

version: 0.2
July 3, 2023

ASPCOwhyModeling

The Modeler’s Mindset Evolves too

understanding exploration optimization verification

Explorative

what is needed?

what can be achieved?
Defensive

what are the risks?

will the system perform well?

how to mitigate shortcomings?

Architecting System Performance; Managing System Performance
16 Gerrit Muller

version: 0.2
July 3, 2023

ASPCImindsetModeling

The Architect Can Be ”Out of Phase”

understanding exploration optimization verification

Explorative

what is needed?

what can be achieved?
Defensive

what are the risks?

will the system perform well?

how to mitigate shortcomings?

mindset of most

stakeholders

mindset of

architect

“look ahead”

Architecting System Performance; Managing System Performance
17 Gerrit Muller

version: 0.2
July 3, 2023

ASPCIoutOfPhase

10 Fundamental Recommendations

objectives

principles recommendations

Time-box

Iterate

Multi-view

Measure and validate

Quantify early

Visualize

System and its context

Analysis of accuracy and

credibility

(Simple) mathematical models

Multiple levels of abstraction

use feedback

work incremental

work evolutionary

support communication

facilitate reasoning

support decision making

be explicit

make issues tangible

create

maintain

understanding

insight

overview

translate into

translate into

help to

achieve

help to achieve

Architecting System Performance; Managing System Performance
18 Gerrit Muller

version: 0.2
July 3, 2023

MAOrecommendations

Iterative Performance Management during Development

determine most

important and critical

requirements

model

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

Architecting System Performance; Managing System Performance
19 Gerrit Muller

version: 0.2
July 3, 2023

EAAspiral

Managing Performance during Product Development

incomplete

understanding

calibration

input

100

1000

time

design

robustness

problem

w
o
rs
e

b
et
te
r

degrading

performance

measurement

design

estimate and

uncertainty

specification

finished

product

Architecting System Performance; Managing System Performance
20 Gerrit Muller

version: 0.2
July 3, 2023

BWMAquantificationInTime

Quantification Steps

order of magnitude

guestimates

calibrated estimates

10

50 200

30 300

10030 300

70 140

90 115

feasibility
measure,

analyze,

simulate

back of the

envelope

benchmark,

spreadsheet

calculation

99.999 100.001
cycle

accurate

Architecting System Performance; Managing System Performance
21 Gerrit Muller

version: 0.2
July 3, 2023

BWMAquantificationSteps

Architecting System Performance; Course Didactics
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The didactics behind a course like Architecting System Performance is a
challenge, because the learning goals relate mostly to attitude and ways of
thinking. At the same time, the material covers methods, techniques, tools, and
concepts, which may lure participants in mechanistic approaches. Core in the
didactic approach is reflection. This presentation offers some ”thinking models” to
assist reflection.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.1

team 1

team 2team 3

team 4

flips team 1flips team 4

flips team 2flips team 3

reflection

wall

mental switch

from problem/system

to “meta”

how, what, why?

Competence Requires Various Learning Styles

Knowledge

Skills

Ability

Attitude

a
s
s
ig

n
m

e
n

ts

p
ra

c
ti
c
e

te
ac
h
er
/c
o
ac
h

p
ar
ti
ci
p
an
t

le
c
tu

ri
n

g

e
x
e

rc
is

e
s

c
o

a
c
h

in
g

re
fl
e

c
ti
o

n

what how who

Architecting System Performance; Course Didactics
23 Gerrit Muller

version: 0.1
July 3, 2023

AACLcompetenceProgram

Bloom’s Taxonomy and Higher Order Thinking Skills

remembering

understanding

applying

analyzing

evaluating

creating Higher Order Thinking Skills

more difficult to teach

more valuable

takes time to develop

Lower Order Thinking Skills

people can acquire them fast

must be mastered before,

however when missing

can be acquired fast

Architecting System Performance; Course Didactics
24 Gerrit Muller

version: 0.1
July 3, 2023

ASPCDbloomsTaxonomy

Course Assumption:

This course focuses on Higher Order Thinking Skills.

We assume

that you have appropriate knowledge

and

that you are able to find and absorb

required specific knowledge fast.

Architecting System Performance; Course Didactics
25 Gerrit Muller

version: 0.1
July 3, 2023

ASPCDknowledgeAndLOTS

Problem-Based Learning Using Reflection

experiencing

reflecting

generalizing

applying

source: Kolb's learning cycle
http://www.infed.org/biblio/b-explrn.htm

analyzing

interpreting

explaining

observing

conceptualizing

testing

Architecting System Performance; Course Didactics
26 Gerrit Muller

version: 0.1
July 3, 2023
RASAcycle

Role of Experience in Learning

10: Education

70: Experience

20: Exposure

70:20:10 learning model

Modeling

Coaching

Scaffolding

Articulation

Reflection

Exploration

https://en.wikipedia.org/wiki/

Cognitive_apprenticeship

Architecting System Performance; Course Didactics
27 Gerrit Muller

version: 0.1
July 3, 2023

ASPCD702010

DSRP Model

Making Distinctions identity
Distinction

other

A not A

Organizing Systems

System

Recognizing Relationships
Relation

Taking Perspectives

Perspective

D
S

R
P

 m
o

d
e

l

Architecting System Performance; Course Didactics
28 Gerrit Muller

version: 0.1
July 3, 2023

ASPCDdsrpModel

Separate Reflection Wall

team 1

team 2team 3

team 4

flips team 1flips team 4

flips team 2flips team 3

reflection

wall

mental switch

from problem/system

to “meta”

how, what, why?

Architecting System Performance; Course Didactics
29 Gerrit Muller

version: 0.1
July 3, 2023

ASPCDroomLayout

Scope and Topic of Reflection

principle

process or

method

procedure or

technique

organization

project

team

individual

operational or

life cycle context

system of

interest

component

or function

of interest

tool or

notation

technical psychosocial means

Architecting System Performance; Course Didactics
30 Gerrit Muller

version: 0.1
July 3, 2023
RASAscope

The Role of Assumptions and Beliefs in Thinking

observe data

select data

add meaning

make assumptions

draw conclusions

adopt beliefs

take actions

reflexive loop

beliefs influence

what we observe

after https://pivotalthinking.files.wordpress.com/2011/11/plain-inference.png

The “Ladder of Inference” originally

proposed by Chris Argyris and developed

by Peter Senge and his colleagues [The

Fifth Discipline Fieldbook] illustrates how

these biases can be built into our thinking.

https://pivotalthinking.wordpress.com/tag/ladder-

of-inference/

Architecting System Performance; Course Didactics
31 Gerrit Muller

version: 0.1
July 3, 2023

ASPCDladderOfInference

Architecting System Performance; Connecting Breadth and
Depth

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

System Performance plays a crucial role in the customer value proposition and the
business proposition. Minor details deep down into the system may have a large
impact on system performance, and hence on both value propositions. Challenge
in architecting system performance is to connect both worlds, which are mentally
far apart.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

n
u

m
b

e
r

o
f

d
e

ta
ils

st
re

tc
h

en
gi

n
ee

r

st
re

tc
h

sy
st

em

ar
ch

it
ec

t

st
re

tc
h

se
n

io
r

en
gi

n
ee

r

100 10 1

Organizational Problem: Disconnect

Customer

objectives

Application Functional Conceptual Realisation

H
o

w
 c

a
n

 th
e

 p
ro

d
u

c
t b

e
 re

a
liz

e
d

W
h

a
t a

re
 th

e
 c

ritic
a

l d
e

c
is

io
n

s

What does Customer need

in Product and Why?

system

requirements

design

decisions

parts

connections

lines of code

and growing every year....

g
a
p

Architecting System Performance; Connecting Breadth and Depth
33 Gerrit Muller

version: 0
July 3, 2023

RATWdisconnect

Architect: Connecting Problem and Technical Solution

Customer

objectives

Application Functional Conceptual Realisation

How can the product be realized

What are the critical decisions

What does Customer need

in Product and Why?

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

system

requirements

design

decisions

parts

connections

lines of code

n
u

m
b

e
r

o
f

d
e

ta
ils

and growing every year....10
8

Architecting System Performance; Connecting Breadth and Depth
34 Gerrit Muller

version: 0
July 3, 2023

RATWbreadthAndDepth

Major Bottleneck: Mental Dynamic Range

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

n
u

m
b

e
r

o
f

d
e

ta
ils

st
re

tc
h

en
gi

n
ee

r

st
re

tc
h

sy
st

em

ar
ch

it
ec

t

st
re

tc
h

se
n

io
r

en
gi

n
ee

r

100 10 1

Architecting System Performance; Connecting Breadth and Depth
35 Gerrit Muller

version: 0
July 3, 2023

RATWmentalDynamicRange

Breadth

System of

Interest

supporting systems

train plan maintain

surrounding systems

supply receive manage

stakeholders

concerns

needs

interests

regulations

processes

procedures

Architecting System Performance; Connecting Breadth and Depth
36 Gerrit Muller

version: 0
July 3, 2023

CBADbreadth

Depth

design space

resource management
process, transport, store, in/out

internal logistics
concurrency, processes

processing
algorithms, machining, ...

Devilish details in design space may have large impact on performance.

Many detailed design decisions determine system performance.

system

performance

Architecting System Performance; Connecting Breadth and Depth
37 Gerrit Muller

version: 0
July 3, 2023

ASPBDdepth

Modeling and Analysis; Performance Modeling
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Principles and concepts of modeling performance.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

empirical model tmove elevator

Empirical model: a model based on

observations and measurements.

An empirical model describes the

observations.

An empirical model provides no

understanding.

10

20

5

15

10

30
floors

meters

tmove = a * n + b

b
a

First principle model: a model based

on theoretical principles.

A first principle model explains the

desired property from first principles

from the laws of physics.

A first principle model requires values

for incoming parameters to calculate

results.

first principle model ttop floor elevator

s

t

v

t

a

t
ta tatv

v =
dS

dt
a =

dv

dt
j =

da

dt

Position in case of uniform acceleration:

St = S0 + v0t + a0t
21

2

ttop floor = ta + tv + ta

ta = vmax / amax

S(ta) =
1

2
* amax * ta

2

Slinear = Stop floor - 2 * S(ta)

tv = Slinear / vmax

Empirical versus First Principle Models

empirical model tmove elevator

Empirical model: a model based on

observations and measurements.

An empirical model describes the

observations.

An empirical model provides no

understanding.

10

20

5

15

10

30
floors

meters

tmove = a * n + b

b
a

First principle model: a model based

on theoretical principles.

A first principle model explains the

desired property from first principles

from the laws of physics.

A first principle model requires values

for incoming parameters to calculate

results.

first principle model ttop floor elevator

s

t

v

t

a

t
ta tatv

v =
dS

dt
a =

dv

dt
j =

da

dt

Position in case of uniform acceleration:

St = S0 + v0t + a0t
21

2

ttop floor = ta + tv + ta

ta = vmax / amax

S(ta) =
1

2
* amax * ta

2

Slinear = Stop floor - 2 * S(ta)

tv = Slinear / vmax

Modeling and Analysis; Performance Modeling
39 Gerrit Muller

version: 0
July 3, 2023

MAPMempirical

Conceptual = Hybrid of Empirical and First Principle

conceptual model tmove elevator

Conceptual model: a model

explaining observations and

measurements using a selection of

first principles.

A conceptual model is a hybrid of

empirical and first principle models;

simple enough to understand and to

reason, realistic enough to make

sense.

10

20

5

15

10

30
floors

meters

tmove = vmax * n + bstart/stop

bstart/stop

a

s

t

v

t

a

t
ta tatj tj tj tj

S1 S4S0 S2S3 S5

bstart/stop = f(acceleration, jerk)

Modeling and Analysis; Performance Modeling
40 Gerrit Muller

version: 0
July 3, 2023

MAPMconceptual

From Zero to Higher Order Formulas

0
th
 order main function

main parameters

most simple

order of magnitude

1
st
 order add most significant

secondary contributions

improved estimation

2
nd

 order add next level of

contributions

more accurate, understanding

constant velocity

ttop floor = Stop floor / vmax

constant acceleration

ttop floor = Stop floor / vmax

- amax * ta
2
/ vmax + 2 * vmax / amax

constant jerk

ttop floor ~= Stop floor / vmax - amax * ta
2
/ vmax

+ 2 * vmax / amax + 2 * amax / jmax

Modeling and Analysis; Performance Modeling
41 Gerrit Muller

version: 0
July 3, 2023

MAPMorders

Architecting System Performance; Level of Abstraction
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

A recurring question in modeling and perfromance analysis is when to stop
digging. What level of detail is needed to achieve acceptable performance? What
level of abstraction result in credible and sufficiently accurate results? How to
cope with many levels of abstraction?

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

n
u

m
b

e
r

o
f

d
e

ta
ils

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

10
8

10
9

performance definition

elaborated use cases

performance models

budgets and

measurements

component designs

killing details

key performance

e
la

b
o

ra
ti
o

n
,
d

e
s
ig

n
 a

n
d

 e
n

g
in

e
e

ri
n

g

s
im

p
lif

ic
a

ti
o

n
,
a

b
s
tr

a
c
ti
o

n

systems

multidisciplinary

monodisciplinary

Level of Abstraction Single System

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

static system definition

monodisciplinary

n
u

m
b

er
 o

f
d

et
ai

ls

system

requirements

multidisciplinary

design

Architecting System Performance; Level of Abstraction
43 Gerrit Muller

version: 0
July 3, 2023
RAPpyramid

From system to Product Family or Portfolio

n
u

m
b

e
r

o
f

d
e

ta
ils

system

multidisciplinary

monodisciplinary

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

10
8

10
9

systems

multidisciplinary

monodisciplinary

system portfolio

increase

Architecting System Performance; Level of Abstraction
44 Gerrit Muller

version: 0
July 3, 2023

DRALpyramidGrowth

Product Family in Context

10
0

10
6

10
3

10
9

systems

multidisciplinary design

parts, connections, lines of code

10
3

10
9

10
6

stakeholders

enterprise

enterprise context
n

u
m

b
e

r
o

f

d
e

ta
ils

Architecting System Performance; Level of Abstraction
45 Gerrit Muller

version: 0
July 3, 2023
RAPdiabolo

The seemingly random exploration path

le
ve

l o
f

d
et

ai
l

10
6

10
5

10
4

10
3

10

10
2

subject

1/20

2/19

3/18
4

5

6

7

9

10

11 12

13

14

15

16

17
8

thinking path

of an architect

during

a few minutes

up to 1 day

Architecting System Performance; Level of Abstraction
46 Gerrit Muller

version: 0
July 3, 2023

BWMAexplorationPath

Coverage of problem and solution space

covered or touched by architects

covered by engineers and experts

le
ve

l o
f

d
et

ai
l

subjects

Architecting System Performance; Level of Abstraction
47 Gerrit Muller

version: 0
July 3, 2023

BWMAcoverage

Many Levels of Abstraction

n
u

m
b

e
r

o
f

d
e

ta
ils

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

10
8

10
9

performance definition

elaborated use cases

performance models

budgets and

measurements

component designs

killing details

key performance

e
la

b
o

ra
ti
o

n
,
d

e
s
ig

n
 a

n
d

 e
n

g
in

e
e

ri
n

g

s
im

p
lif

ic
a

ti
o

n
,
a

b
s
tr

a
c
ti
o

n

systems

multidisciplinary

monodisciplinary

Architecting System Performance; Level of Abstraction
48 Gerrit Muller

version: 0
July 3, 2023

ASPLAlevels

Fidelity Properties

n
u

m
b

e
r

o
f

d
e

ta
ils

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

10
8

10
9

systems

multidisciplinary

monodisciplinary

high fidelity
large effort

slow

low fidelity
low effort

fast

stake-

holders

enterprise

enterprise context

what fidelity is needed for:

planning

training

validation

design exploration?

what configurations do we need?

what can we afford?

Architecting System Performance; Level of Abstraction
49 Gerrit Muller

version: 0
July 3, 2023

ASPLAproperties

Visualizing Dynamic Behavior
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Dynamic behavior manifests itself in many ways. Architects need multiple comple-
mentary visualizations to capture dynamic behavior effectively. Examples are
capturing information, material, or energy flow, state, time, interaction, or commu-
nication.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

print

robot

prealign

clean

master

prefill

clean wafer

0 100b 200b

ru
n

 E
D

P
/L

R
P

h
o

o
k
 u

p
 c

o
ile

d
 t
u

b
in

g
/w

ir
e

lin
e

fu
n

c
ti
o

n
 a

n
d

 s
e

a
l
te

s
t

ru
n

 c
o

ile
d

 t
u

b
in

g
/w

ir
e

lin
e

a
s
s
e

m
b

ly
 a

n
d

 t
e

s
t

ru
n

 r
is

e
rs

re
tr

ie
v
e

 c
o

ile
d

 t
u

b
in

g
/w

ir
e

lin
e

h
o

o
k
 u

p
 S

F
T

 a
n

d
 T

F

re
tr

ie
v
e
 S

F
T

 a
n

d
 T

F

re
tr

ie
v
e

 r
is

e
rs

re
tr

ie
v
e

 E
D

P
/L

R
P

actual workover operation

48 hrs

24 48 72 96

hours

d
is

a
s
s
e

m
b

ly

preparation 36 hrs finishing 27 hrs

stop production
resume

production
deferred operation 62 hrs

m
o

v
e

 a
b

o
v
e

 w
e

ll

m
o

v
e

 a
w

a
y
 f
ro

m
 w

e
ll

R
O

V
 a

s
s
is

te
d

 c
o

n
n

e
c
t

assembly,

functional test

run

EDP/LRP

run risers

hook up SFT

and TF

hook up coil

tubing and

wireline BOP

system function

and connection

seal test

run coil tubing

and wireline

retrieve coil

tubing and

wireline BOP

retrieve SFT and

TF

retrieve risers

retrieve

EDP/LRP

perform

workover

operations

move above well
move away from

well

disassembly

3

2

1

4

5

7

6

unhook coil

tubing and

wireline BOP

12

11

10

9

7

8

ROV assisted

connect

ROV assisted

disconnect

Gz

Gx

Gy

RF

TE
TR

typical TE:

5..50ms

transmit receive

functional flow

9 101 2 3 4 5 6 7 8

call family doctor

visit family doctor

call neurology department

visit neurologist

call radiology department

examination itself

diagnosis by radiologist

report from radiologist to

neurologist

visit neurologist

19 2011 12 13 14 15 16 17 18 21 22 23 24 25

days

alarm mode

pre-alarm mode

operating

event reset

acknowledge

alarm handled

idle

start

Information Transformation Flow

Concrete “Cartoon” Workflow

Timeline of Workflow

Timeline and Functional

Flow

Swimming Lanes

Concurrency and Interaction

Signal Waveforms

State Diagram

Abstract

Workflow

get

sensor

data

transform

into image

get

sensor

data

transform

into image

fuse

sensor

images

detect

objects

classify

objects

update

world

model

get

external

data

analyze

situation

get goal

trajectory

get GPS

data

get v, a

calculate

GPS

location

estimate

location

update

location

world model

determine

next step

location

objects

vessel or

platform

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

TF

SFT

WOCS

XT

well

well

head

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

ROV

ROV

rig

vessel or

platform

EDP

LRP

TF

SFT

WOCS

XT

well

well

head

rig
TF

SFT

WOCS

XT

well

well

head

EDP

LRP

rig

vessel or

platform

TF

SFT

WOCS

XT

well

well

head

EDP

LRP

vessel or

platform

rig
TF

SFT

WOCS

XT

well

well

head

EDP

LRP

vessel or

platform

rig

TF

SFT WOCS

XT

well

well

head

EDP

LRP

ROV

1 2 3 4 5 6

7 8 11 12

vessel or

platform

rig

TF

SFT WOCS

XT

well

well

head

LRP

9

EDP

vessel or

platform

rig
TF

SFT

WOCS

XT

well

well

head

LRP

10

EDP

Information Centric Processing

Diagram

Flow of Light

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..
uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

raw

image

resized

image
enhanced

image

grey-

value

image

view-

port

gfx

text

retrieve enhance inter-
polate

lookup merge display

Overview of Visualizations of Dynamic Behavior

print

robot

prealign

clean

master

prefill

clean wafer

0 100b 200b

ru
n

 E
D

P
/L

R
P

h
o

o
k
 u

p
 c

o
ile

d
 t
u

b
in

g
/w

ir
e

lin
e

fu
n

c
ti
o

n
 a

n
d

 s
e

a
l
te

s
t

ru
n

 c
o

ile
d

 t
u

b
in

g
/w

ir
e

lin
e

a
s
s
e

m
b

ly
 a

n
d

 t
e

s
t

ru
n

 r
is

e
rs

re
tr

ie
v
e

 c
o

ile
d

 t
u

b
in

g
/w

ir
e

lin
e

h
o

o
k
 u

p
 S

F
T

 a
n

d
 T

F

re
tr

ie
v
e

 S
F

T
 a

n
d

 T
F

re
tr

ie
v
e

 r
is

e
rs

re
tr

ie
v
e

 E
D

P
/L

R
P

actual workover operation

48 hrs

24 48 72 96

hours

d
is

a
s
s
e

m
b

ly

preparation 36 hrs finishing 27 hrs

stop production
resume

production
deferred operation 62 hrs

m
o

v
e

 a
b

o
v
e

 w
e

ll

m
o

v
e

 a
w

a
y
 f
ro

m
 w

e
ll

R
O

V
 a

s
s
is

te
d

 c
o

n
n

e
c
t

assembly,

functional test

run

EDP/LRP

run risers

hook up SFT

and TF

hook up coil

tubing and

wireline BOP

system function

and connection

seal test

run coil tubing

and wireline

retrieve coil

tubing and

wireline BOP

retrieve SFT and

TF

retrieve risers

retrieve

EDP/LRP

perform

workover

operations

move above well
move away from

well

disassembly

3

2

1

4

5

7

6

unhook coil

tubing and

wireline BOP

12

11

10

9

7

8

ROV assisted

connect

ROV assisted

disconnect

Gz

Gx

Gy

RF

TE
TR

typical TE:

5..50ms

transmit receive

functional flow

9 101 2 3 4 5 6 7 8

call family doctor

visit family doctor

call neurology department

visit neurologist

call radiology department

examination itself

diagnosis by radiologist

report from radiologist to

neurologist

visit neurologist

19 2011 12 13 14 15 16 17 18 21 22 23 24 25

days

alarm mode

pre-alarm mode

operating

event reset

acknowledge

alarm handled

idle

start

Information Transformation Flow

Concrete “Cartoon” Workflow

Timeline of Workflow

Timeline and Functional

Flow

Swimming Lanes

Concurrency and Interaction

Signal Waveforms

State Diagram

Abstract

Workflow

get

sensor

data

transform

into image

get

sensor

data

transform

into image

fuse

sensor

images

detect

objects

classify

objects

update

world

model

get

external

data

analyze

situation

get goal

trajectory

get GPS

data

get v, a

calculate

GPS

location

estimate

location

update

location

world model

determine

next step

location

objects

vessel or

platform

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

TF

SFT

WOCS

XT

well

well

head

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

ROV

ROV

rig

vessel or

platform

EDP

LRP

TF

SFT

WOCS

XT

well

well

head

rig
TF

SFT

WOCS

XT

well

well

head

EDP

LRP

rig

vessel or

platform

TF

SFT

WOCS

XT

well

well

head

EDP

LRP

vessel or

platform

rig
TF

SFT

WOCS

XT

well

well

head

EDP

LRP

vessel or

platform

rig

TF

SFT WOCS

XT

well

well

head

EDP

LRP

ROV

1 2 3 4 5 6

7 8 11 12

vessel or

platform

rig

TF

SFT WOCS

XT

well

well

head

LRP

9

EDP

vessel or

platform

rig
TF

SFT

WOCS

XT

well

well

head

LRP

10

EDP

Information Centric Processing

Diagram

Flow of Light

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..
uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

raw

image

resized

image
enhanced

image

grey-

value

image

view-

port

gfx

text

retrieve enhance inter-
polate

lookup merge display

Visualizing Dynamic Behavior
51 Gerrit Muller

version: 0
July 3, 2023

VDBoverview

Example Functional Model of Information Flow

get

sensor

data

transform

into image

get

sensor

data

transform

into image

fuse

sensor

images

detect

objects

classify

objects

update

world

model

get

external

data

analyze

situation

get goal

trajectory

get GPS

data

get v, a

calculate

GPS

location

estimate

location

update

location

world model

determine

next step

location

objects

Visualizing Dynamic Behavior
52 Gerrit Muller

version: 0
July 3, 2023

BSEARfunctionalModel

”Cartoon” Workflow

vessel or

platform

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

rig

vessel or

platform

EDP

LRP

TF

SFT

WOCS

XT

well

well

head

rig

vessel or

platform

EDP

LRP

riser

XT

well

TF

SFT

well

head

WOCS

ROV

ROV

rig

vessel or

platform

EDP

LRP

TF

SFT

WOCS

XT

well

well

head

rig
TF

SFT

WOCS

XT

well

well

head

EDP

LRP

rig

vessel or

platform

TF

SFT

WOCS

XT

well

well

head

EDP

LRP

vessel or

platform

rig
TF

SFT

WOCS

XT

well

well

head

EDP

LRP

vessel or

platform

rig

TF

SFT WOCS

XT

well

well

head

EDP

LRP

ROV

1 2 3 4 5 6

7 8 11 12

vessel or

platform

rig

TF

SFT WOCS

XT

well

well

head

LRP

9

EDP

vessel or

platform

rig
TF

SFT

WOCS

XT

well

well

head

LRP

10

EDP

Visualizing Dynamic Behavior
53 Gerrit Muller

version: 0
July 3, 2023

SSMEtypicalWorkoverOperationCartoon

Workflow as Functional Model

rig

vessel or

platform

assembly,

functional test

run

EDP/LRP

run risers

hook up SFT

and TF

hook up coil

tubing and

wireline BOP
EDP

LRP

riser

XT

well

TF

SFT

wireline

coil tubing BOP

well

head

WOCS

system function

and connection

seal test

run coil tubing

and wireline

retrieve coil

tubing and

wireline BOP

retrieve SFT and

TF

retrieve risers

retrieve

EDP/LRP

perform

workover

operations

move above well
move away from

well

disassembly

3

2

1

4

5

7

6

unhook coil

tubing and

wireline BOP

12

11

10

9

7

8

ROV assisted

connect

ROV assisted

disconnect

Visualizing Dynamic Behavior
54 Gerrit Muller

version: 0
July 3, 2023

SSMEtypicalWorkoverOperation

Workflow as Timeline

ru
n

 E
D

P
/L

R
P

h
o

o
k
 u

p
 c

o
ile

d
 t
u

b
in

g
/w

ir
e

lin
e

fu
n

c
ti
o

n
 a

n
d

 s
e

a
l
te

s
t

ru
n

 c
o

ile
d

 t
u

b
in

g
/w

ir
e

lin
e

a
s
s
e

m
b

ly
 a

n
d

 t
e

s
t

ru
n

 r
is

e
rs

re
tr

ie
v
e

 c
o

ile
d

 t
u

b
in

g
/w

ir
e

lin
e

h
o

o
k
 u

p
 S

F
T

 a
n

d
 T

F

re
tr

ie
v
e
 S

F
T

 a
n

d
 T

F

re
tr

ie
v
e

 r
is

e
rs

re
tr

ie
v
e

 E
D

P
/L

R
P

actual workover operation

48 hrs

24 48 72 96

hours

d
is

a
s
s
e

m
b

ly

assumptions:

running and retrieving risers: 50m/hr

running and retrieving coiled tubing/wireline: 100m/hr

depth: 300m

preparation 36 hrs finishing 27 hrs

stop production
resume

production
deferred operation 62 hrs

m
o

v
e

 a
b

o
v
e

 w
e

ll

m
o

v
e

 a
w

a
y
 f
ro

m
 w

e
ll

R
O

V
 a

s
s
is

te
d

 c
o

n
n

e
c
t

Visualizing Dynamic Behavior
55 Gerrit Muller

version: 0
July 3, 2023

SSMEtypicalWorkoverOperationTimeline

Swimming Lane Example

print

robot

prealign

clean

master

prefill

clean wafer

0 100b 200b

Visualizing Dynamic Behavior
56 Gerrit Muller

version: 0
July 3, 2023

REPLIcellTimeLineSimplified

Example Signal Waveforms

Gz

Gx

Gy

RF

TE
TR

Gy=0 Gy=127

imaging =

repeating similar pattern

many times

typical TE:

5..50ms

transmit receive

Visualizing Dynamic Behavior
57 Gerrit Muller

version: 0
July 3, 2023
MRimaging

Example Time Line with Functional Model

functional flow

9 101 2 3 4 5 6 7 8

call family doctor

visit family doctor

call neurology department

visit neurologist

call radiology department

examination itself

diagnosis by radiologist

report from radiologist to

neurologist

visit neurologist

19 2011 12 13 14 15 16 17 18 21 22 23 24 25

days

Visualizing Dynamic Behavior
58 Gerrit Muller

version: 0
July 3, 2023

MRendToEndTimeLine

Information Centric Processing Diagram

raw

image

resized

image
enhanced

image

grey-

value

image

view-

port

gfx

text

retrieve enhance inter-
polate

lookup merge display

Visualizing Dynamic Behavior
59 Gerrit Muller

version: 0
July 3, 2023

MICVprocessingCachedPixmaps

Example State Diagram

alarm mode

pre-alarm mode

operating

event reset

acknowledge

alarm handled

idle

start

Visualizing Dynamic Behavior
60 Gerrit Muller

version: 0
July 3, 2023

VDBstateDiagram

Flow of Light (Physics)

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..
uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

Visualizing Dynamic Behavior
61 Gerrit Muller

version: 0
July 3, 2023

TSAITphysicsView

Dynamic Behavior is Multi-Dimensional

How does the system work and operate?

Functions describe what rather than how.

Functions are verbs.

Input-Process-Output paradigm.

Multiple kinds of flows:

physical (e.g. hydrocarbons, goods, energy)

information (e.g. measurements, signals)

control

Time, events, cause and effect

Concurrency, synchronization, communication

multi-dimensional

information and

dynamic behavior

Visualizing Dynamic Behavior
62 Gerrit Muller

version: 0
July 3, 2023

VDBkeyPhrases

Modeling and Analysis: Emerging Behavior
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The essence of a system is that the parts together can do more than the separate
parts. The interaction of the parts results in behavior and properties that cannot
be seen as beloning to individual parts. We call this type of behavior ”emerging
behavior”.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

goal of design

risk side-effect

mitigated

risk side-effect

foreseen

foreseen, but

underestimated

unforeseen

undesired desired

Emergence is Normal and Everywhere

emergent behavior and properties =

function of

dynamic interaction between

parts in the system and

context of the system

examples

· flying and stalling of an airplane

· Tacoma bridge resonance

Modeling and Analysis: Emerging Behavior
64 Gerrit Muller

version: 0
July 3, 2023

MAEBemergence

Emergence, Desire, and Foreseeing

goal of design

risk side-effect

mitigated

risk side-effect

foreseen

foreseen, but

underestimated

unforeseen

undesired desired

Modeling and Analysis: Emerging Behavior
65 Gerrit Muller

version: 0
July 3, 2023
MAEBmatrix

Modeling and Analysis: Budgeting
by Gerrit Muller TNO-ESI, HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

This presentation addresses the fundamentals of budgeting: What is a budget,
how to create and use a budget, what types of budgets are there. What is the
relation with modeling and measuring.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 1.0

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

Budgeting

content of this presentation

What and why of a budget

How to create a budget (decomposition, granularity, inputs)

How to use a budget

Modeling and Analysis: Budgeting
67 Gerrit Muller

version: 1.0
July 3, 2023

MABUcontent

What is a Budget?

A budget is

a quantified instantation of a conceptual model

A budget can

prescribe or describe the contributions

by parts of the solution

to the system quality under consideration

Modeling and Analysis: Budgeting
68 Gerrit Muller

version: 1.0
July 3, 2023

MABUbudget

Why Budgets?

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicitly

Modeling and Analysis: Budgeting
69 Gerrit Muller

version: 1.0
July 3, 2023
MABUgoals

Visualization of Budget Based Design Flow

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

Modeling and Analysis: Budgeting
70 Gerrit Muller

version: 1.0
July 3, 2023
EAAbudget

Stepwise Budget Based Design Flow

1B model the performance starting with old systems

1A measure old systems

1C determine requirements for new system

2 make a design for the new system

3 make a budget for the new system:

4 measure prototypes and new system

flow model and analytical model

micro-benchmarks, aggregated functions, applications

response time or throughput

explore design space, estimate and simulate

step example

models provide the structure

measurements and estimates provide initial numbers

specification provides bottom line

micro-benchmarks, aggregated functions, applications

profiles, traces

5 Iterate steps 1B to 4

Modeling and Analysis: Budgeting
71 Gerrit Muller

version: 1.0
July 3, 2023
TCRbudgets

Budgets Applied on Waferstepper Overlay

process

overlay

80 nm

reticle

15 nm

matched

machine

60 nm

process

dependency

sensor

5 nm

matching

accuracy

5 nm

single

machine

30 nm

lens

matching

25 nm

global

alignment

accuracy

6 nm

stage

overlay

12 nm

stage grid

accuracy

5 nm

system

adjustment

accuracy

2 nm

stage Al.

pos. meas.

accuracy

4 nm

off axis pos.

meas.

accuracy

4nm

metrology

stability

5 nm

alignment

repro

5 nm

position

accuracy

7 nm

frame

stability

2.5 nm

tracking

error phi

75 nrad

tracking

error X, Y

2.5 nm

interferometer

stability

1 nm

blue align

sensor

repro

3 nm

off axis

Sensor

repro

3 nm

tracking

error WS

2 nm

tracking

error RS

1 nm

Modeling and Analysis: Budgeting
72 Gerrit Muller

version: 1.0
July 3, 2023

ASMLoverlayBudget

Budgets Applied on Medical Workstation Memory Use

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Modeling and Analysis: Budgeting
73 Gerrit Muller

version: 1.0
July 3, 2023

RVmemoryBudgetTable

Power Budget Visualization for Document Handler

paper path

scanner
and feeder

procedé

UI and
control

finisher

paper input
module

power

supplies

s
c
a

n
n

e
r

fe
e

d
e

r

U
I
a

n
d

c
o

n
tr

o
l

cooling
power supplies

paper path

procedé fi
n

is
h

e
r

p
a

p
e

r

in
p

u
t

m
o

d
u

le

size

proportional

to power

physical

layout

legend

cooling

Modeling and Analysis: Budgeting
74 Gerrit Muller

version: 1.0
July 3, 2023

MDMpowerProportions

Alternative Power Visualization

power supplies

cooling

UI and control

paper path

paper input
module

finisher paper

procedé

electrical
power

heat

Modeling and Analysis: Budgeting
75 Gerrit Muller

version: 1.0
July 3, 2023

MDMpowerArrows

Evolution of Budget over Time

fact finding through details

aggregate to end-to-end performance

search for appropriate abstraction level(s)

from coarse guesstimate

to reliable prediction

from typical case

to boundaries of requirement space

from static understanding

 to dynamic understanding

from steady state

to initialization, state change and shut down

from old system

to prototype

to actual implementation

time

start later only if needed

Modeling and Analysis: Budgeting
76 Gerrit Muller

version: 1.0
July 3, 2023

MABUincrements

Potential Applications of Budget based design

• resource use (CPU, memory, disk, bus, network)

• timing (response, latency, start up, shutdown)

• productivity (throughput, reliability)

• Image Quality parameters (contrast, SNR, deformation, overlay, DOF)

• cost, space, time

Modeling and Analysis: Budgeting
77 Gerrit Muller

version: 1.0
July 3, 2023

MDMbudgetApplications

What kind of budget is required?

static

 is the budget based on

wish, empirical data, extrapolation,

educated guess, or expectation?

typical case

global

approximate

dynamic

worst case

detailed

accurate

Modeling and Analysis: Budgeting
78 Gerrit Muller

version: 1.0
July 3, 2023

MDMbudgetTypes

Summary of Budgeting

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution

to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and

measurements

Budgets are based on models and estimations

Budget visualization is critical for communication

Budgeting requires an incremental process

Many types of budgets can be made; start simple!

Modeling and Analysis: Budgeting
79 Gerrit Muller

version: 1.0
July 3, 2023

MABUsummary

Colophon

The Boderc project contributed to Budget Based

Design. Especially the work of

Hennie Freriks, Peter van den Bosch (Océ),

Heico Sandee and Maurice Heemels (TU/e, ESI)

has been valuable.

Modeling and Analysis: Budgeting
80 Gerrit Muller

version: 1.0
July 3, 2023

MABUcolofon

Modeling and Analysis; Modeling Paradigms
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The word modeling is used for a wide variety of modeling approaches. These
approaches differ in purpose, level of detail, effort, stakeholders, degree of
formaility, and tool support.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: planned
version: 0

Conceptual system modeling

SysML

Design for 6 sigma

Conceptual information modeling

Design Framework

Matlab

CAD

Formal specification and design

(model checkers)

architecting

formal capture of structure and behavior

quality improvement in repeatable environments

understanding and formalizing information

capturing and tracing architecture decisions

modeling and analyzing designs and algorithms

mechanical and electrical design

verification

understanding, evaluating, creating

reasoning, communicating, decision making

simulation and code generation

interoperates with dedicated analysis,

e.g. thermal, structural

integrating other tools

simulating

paradigm purpose

black box oriented

Human Thinking and Tools

10
0

10
6

10
3

10
9

10
3

10
9

10
6

n
u

m
b

e
r

o
f

d
e

ta
ils

systems

multi-disciplinary

design

parts, connections,

lines of code

stakeholders

enterprise

enterprise context

tools to manage

large amounts

of information

human

overview

e.g.

Doors

Core

Modeling and Analysis; Modeling Paradigms
82 Gerrit Muller

version: 0
July 3, 2023

KDAWStoolsDiabolo

Formality Levels in Pyramids

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

mono-

disciplinary

multi-

disciplinary

system

n
u

m
b

e
r

o
f

d
e

ta
ils

more formal, more rigorous

less formal,

communication-

oriented

generated/

instantiated

machine

readable

well defined

repeatable

reusable

heterogeneous

uncertainties, unknowns

variable backgrounds, concerns

SysML

DOORS

IDEF0

10
8

10
9

Modeling and Analysis; Modeling Paradigms
83 Gerrit Muller

version: 0
July 3, 2023

TBSApyramidFormality

Modeling Paradigms

Conceptual system modeling

SysML

Design for 6 sigma

Conceptual information modeling

Design Framework

Matlab

CAD

Formal specification and design

(model checkers)

architecting

formal capture of structure and behavior

quality improvement in repeatable environments

understanding and formalizing information

capturing and tracing architecture decisions

modeling and analyzing designs and algorithms

mechanical and electrical design

verification

understanding, evaluating, creating

reasoning, communicating, decision making

simulation and code generation

interoperates with dedicated analysis,

e.g. thermal, structural

integrating other tools

simulating

paradigm purpose

black box oriented

Modeling and Analysis; Modeling Paradigms
84 Gerrit Muller

version: 0
July 3, 2023

MAMPparadigms

Modeling and Analysis: Applications and Variations
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Models are used for a wide variation of purposes. Stakeholders can get confused
between ”reality” and the virtual counterparts. In practice, many hybrids between
”real” and virtual systems exist. For example, planning and training systems using
real algorithms and data, and physical systems using a world model for situation
awareness.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.1

“real” world

system-

of-interest

subsystem

systemsystem

stakeholders

environment

hardware

component

software

component

mutually interacting

consisting of

virtual world

system-

of-interest

subsystem

systemsystem

stakeholders
environment

hardware

component

software

component

mutually interacting

consisting of

“real” world; testing

system-of-

interest

subsystem

systemsystem

stakeholders

environment

hardware

component

software

component

mutually interacting

consisting of

virtual world; HIL

system-

of-interest

subsystem

systemsystem

environment

hardware

component

software

component

mutually interacting

consisting of

virtual world; SIL

system-

of-interest

subsystem

systemsystem

environment

hardware

component

software

component

mutually interacting

consisting of

agentts

stakeholders

agentts

stakeholders

agentts

simulation in context

system-

of-interest

subsystem

systemsystem

environment

hardware

component

software

component

consisting of

data

data

data data data

data

stakeholders

mutually interacting

Model Applications and Variations

development
verification

validation
operation

understanding

exploration

optimization

test data

comparison

trouble shooting

mission planning

training

health monitoring

in system

situation awareness

planning

training

health monitoring

sales

acquisition

capability analysis

evolvability

all phases repeat

with same needs

Systems of Systems

apply all

asynchronously

Modeling and Analysis: Applications and Variations
86 Gerrit Muller

version: 0.1
July 3, 2023

MAVCmodelVariations

Spectrum from Real to Virtual Systems

“real” world

system-

of-interest

subsystem

systemsystem

stakeholders

environment

hardware

component

software

component

mutually interacting

consisting of

virtual world

system-

of-interest

subsystem

systemsystem

stakeholders
environment

hardware

component

software

component

mutually interacting

consisting of

“real” world; testing

system-of-

interest

subsystem

systemsystem

stakeholders

environment

hardware

component

software

component

mutually interacting

consisting of

virtual world; HIL

system-

of-interest

subsystem

systemsystem

environment

hardware

component

software

component

mutually interacting

consisting of

virtual world; SIL

system-

of-interest

subsystem

systemsystem

environment

hardware

component

software

component

mutually interacting

consisting of

agentts

stakeholders

agentts

stakeholders

agentts

simulation in context

system-

of-interest

subsystem

systemsystem

environment

hardware

component

software

component

consisting of

data

data

data data data

data

stakeholders

mutually interacting

Modeling and Analysis: Applications and Variations
87 Gerrit Muller

version: 0.1
July 3, 2023

MAPMvirtuality

Architecting for Variations

variation dimensions

fidelity

product/system

performance

functionality

application

model purpose

exhaustiveness

properties

time-performance

accuracy

build & update effort

build & update time

testing effort and time

credibility

applicability

usability

impact

system architecture

modularity

variation design

model architecture

modularity

variation design

feed

it
e

ra
te

Modeling and Analysis: Applications and Variations
88 Gerrit Muller

version: 0.1
July 3, 2023

MAVCvariationDimensions

Modeling and Analysis: Model Analysis
by Gerrit Muller TNO-ESI, USN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Models only get value when they are actively used. We will focus in this presen-
tation on analysis aspects: accuracy, credibility, sensitivity, efficiency, robustness,
reliability and scalability.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: planned
version: 1.0

varying inputs
varying circumstances

varying design options
varying realizations

specification changes

and ripple through

model(s)

working range
worst case behavior
exceptional behavior

accuracy
credibility
working range

sensitivity
robustness
efficiency

model

applicability

design

quality

design

understanding

exploration

optimization

verification

life cycle
performance

reliability

scalability
other system qualities

specification

feasibility

use cases

worst case

exceptions

change cases

What Comes out of a Model

varying inputs
varying circumstances

varying design options
varying realizations

specification changes

and ripple through

model(s)

working range
worst case behavior
exceptional behavior

accuracy
credibility
working range

sensitivity
robustness
efficiency

model

applicability

design

quality

design

understanding

exploration

optimization

verification

life cycle
performance

reliability

scalability
other system qualities

specification

feasibility

use cases

worst case

exceptions

change cases

Modeling and Analysis: Model Analysis
90 Gerrit Muller

version: 1.0
July 3, 2023

MAANaspects

Applicability of the Model

model(s)

accuracy
credibility
working range

facts

measurements

assumptions

abstraction

usage context

specifications

designs

realizations

+
-

1
2

input

accuracy

credibility

abstraction

credibility

working range

model realization

credibility

propagation

a
b

s
tra

c
tio

n

Modeling and Analysis: Model Analysis
91 Gerrit Muller

version: 1.0
July 3, 2023

MAANmodelApplicability

How to Determine Applicability

simple and small models
1. Estimate accuracy of results

2. Identify top 3 credibility risks

3. Identify relevant working range risks

identify biggest uncertainties in

inputs, abstractions and realization

identify required (critical) working ranges and

compare with model working range

based on most significant inaccuracies of inputs

and assumed model propagation behavior

try out models
be aware of accuracy, credibility and working range

substantial models
systematic analysis and documentation of accuracy,

credibility and working range

Modeling and Analysis: Model Analysis
92 Gerrit Muller

version: 1.0
July 3, 2023

MAANapplicabilityHowTo

Common Pitfalls

discrete events in continuous world

(too) systematic input data

fragile model

self fulfilling prophecy

discretization artefacts

e.g. stepwise simulations

random data show different behavior

e.g. memory fragmentation

small model change results in large shift in results

price erosions + cost increase (inflation) -> bankruptcy

Modeling and Analysis: Model Analysis
93 Gerrit Muller

version: 1.0
July 3, 2023

MAANpitfalls

Worst Case Questions

Which design assumptions have a big impact on system performance?

What are the worst cases for these assumptions?

How does the system behave in the worst case?

a. poor performance within spec

b. poor performance not within spec

c. failure -> reliability issue

Modeling and Analysis: Model Analysis
94 Gerrit Muller

version: 1.0
July 3, 2023

MAANworstCaseQuestions

FMEA-like Analysis Techniques

potential hazards
safety
hazard analysis

reliability
FMEA

failure modes

exceptional cases

security vulnerability risks

damage

effects

consequences

measures

measures

measures

maintainability change cases impact, effort, time

performance worst cases system behavior decisions

(systematic)

brainstorm

improve
spec, design,

process,

procedure, ...

analysis and

assessment
probability

severity

propagation

decisions

Modeling and Analysis: Model Analysis
95 Gerrit Muller

version: 1.0
July 3, 2023

MAANfmeaLikeAnalysis

Brainstorming Phases

wave 1: the obvious

wave 2: more of the same

wave 3: the exotic, but potentially important

don't stop too early with brainstorming!

Modeling and Analysis: Model Analysis
96 Gerrit Muller

version: 1.0
July 3, 2023

MAANbrainstorm

Different Viewpoints for Analysis

life cycle context

systemusage context

new product

e.g. WoW extension

merger

automated access

new functions

new interfaces

new media

new standards

cache/memory trashing

garbage collection

critical sections

local peak loads

intermittent HW failure

power failure

network failure

new SW release

roll back to old SW release

Modeling and Analysis: Model Analysis
97 Gerrit Muller

version: 1.0
July 3, 2023

MAANviewpoints

Modeling and Analysis: Reasoning Approach
by Gerrit Muller TNO-ESI, HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

We make models to facilitate decision making. These decisions range from
business decisions, such as Service Level Agreements, to requirements, and to
detailed design decisions. The space of decisions is huge and heterogeneous.
The proposed modeling approach is to use multiple small and simple models. In
this paper we discuss how to reason by means of multiple models.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 1.0 life cycle context

systemusage context
enterprise&users black box view design

m

a

d

d

d

d
d

d

d

d

d

d

a

a

a

a
a

a
a

m

mm

m

m

m

m

m

m

m

m

d

d

d d

d

d

a

a

a

a

a

a

d

d

a

d

a

a

a

a

a a

d

d

d

d

d
d

d

aa a

a
a

i
i

i

i

i i

i

i

i

i

i

i

i

i

a

i

d

m

legend

assumption

input e.g.

measurement

decision

model

Purpose of Modeling

facts from investigation

measurements

assumptions

uncertainties

unknowns

errors

modeling

analysis

results
decision
making

accuracy

working range

credibility

risk

customer satisfaction

time, cost, effort

profit margin

How to use multiple models to facilitate decisions?

How to get from many fragments to integral insight?

How many models do we need?

At what quality and complexity levels ?

specification

verification

decisions

Modeling and Analysis: Reasoning Approach
99 Gerrit Muller

version: 1.0
July 3, 2023

MAREpurpose

Graph of Decisions and Models

life cycle context

systemusage context
enterprise&users black box view design

m

a

d

d

d

d
d

d

d

d

d

d

a

a

a

a
a

a
a

m

mm

m

m

m

m

m

m

m

m

d

d

d d

d

d

a

a

a

a

a

a

d

d

a

d

a

a

a

a

a a

d

d

d

d

d
d

d

aa a

a
a

i
i

i

i

i i

i

i

i

i

i

i

i

i

a

i

d

m

legend

assumption

input e.g.

measurement

decision

model

Modeling and Analysis: Reasoning Approach
100 Gerrit Muller

version: 1.0
July 3, 2023
MAREgraph

Example Graph for Web Shop

life cycle context

systemusage context
enterprise&users black box view design

a

i

d

m

legend

assumption

input e.g.

measurement

decision

model

customer
interest

customer
behavior

financial

personnel

running
cost

maintenance
effort

initial cost

load

throughput

response
time

CPU load

network
load

storage
capacity

transactions

picture
cacheinformation

transaction
speed

transaction
CPU

access time

overhead

market share

market
penetration

margin

SLA
resource

dimensionsing

salary

service
cost

work
flow

changes

#products

CPU
budget

memory
budget

elapsed

time

budget

Modeling and Analysis: Reasoning Approach
101 Gerrit Muller

version: 1.0
July 3, 2023

MAREgraphWebShop

Relations: Decisions, Models, Inputs and Assumptions

m

d

d

a

i

a

i

d

m

legend

assumption

input e.g.

measurement

decision

model

facilita
tes

calibrates
feeds

feeds
m

m

fee
ds

a

i

facilitates

facilitates

d
influ

enc
e

trig
ger

s
tri
gg
er
s

i

a

triggers
triggers

Modeling and Analysis: Reasoning Approach
102 Gerrit Muller

version: 1.0
July 3, 2023

MARErelations

Reasoning Approach

1. Explore usage context, life cycle context and system

t3. Make main Threads-of-

Reasoning SMART

t2. Determine main Threads-

of-Reasoning

t4. Identify "hottest" issues

b2b. Investigate facts

b2a. "Play" with models

b2c. Identify assumptions

top-down bottom-up

6. Capture overview, results and decisions

learn

7. Iterate and validate

all steps time-boxed between 1 hour and a few days
early in

project

later in

project

t5. Model hottest,

non-obvious, issues

b3. Model significant,

non-obvious, issues

Modeling and Analysis: Reasoning Approach
103 Gerrit Muller

version: 1.0
July 3, 2023

MAREmethod

Frequency of Assumptions, Decisions and Modeling

a

i

d

m

legend

assumption

input e.g.

measurement

decision

model

10
0

10
6

10
4

10
2

i

implicit

(trivial?)

explicit

very simple

small
key

substantial

m

d

a

d

a

m

d

mtry-outs

Modeling and Analysis: Reasoning Approach
104 Gerrit Muller

version: 1.0
July 3, 2023

MAREfrequency

Life Cycle of Models

m

m

mm

mm
m

mmmm

mmm mmm

understanding exploration optimization verification

try out

models m mm

mmm mm

m

m

m m

abandoned

abandoned

m

m

archived

not maintained

simple and small

models

substantial models

m

? ? most try out models never

leave the desk or computer

of the architect!

archived

not maintained

archived

not maintained

re-used in

next project

re-used in

next project

re-used in

next project

re-used in

next project

re-used in

next project

re-used in

next project

many small and simple models

are used only once;

some are re-used in next projects

substantial models capture core domain know how;

they evolve often from project to project.

creation and evolution of intellectual property assets

re-use

re-use

Modeling and Analysis: Reasoning Approach
105 Gerrit Muller

version: 1.0
July 3, 2023

MAREmodelLifeCycle

Examples of Life Cycle of Models

understanding exploration optimization verification

try out

models

simple and small

models

substantial models

(IP assets)

load/cost

load/cost

peak impact

customer

global

distribution

web server

performance

global

customer

demographics

function

mix

webshop

benchmark

suite

load/stress

test suite
integral

load

model

Modeling and Analysis: Reasoning Approach
106 Gerrit Muller

version: 1.0
July 3, 2023

MAREmodelLifeCycleExample

Architecting System Performance; Defining Performance
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Performance is a broad term. Each domain has its own key performance param-
eters. Performance can be used to indicate time-oriented performance, such as
response time, throughput, or productivity. However, more broadly, it may be
used for aspects like image quality, spatial performance (f.i. positioning accuracy),
energy or power properties, sensitivity and specificity of algorithms, or reliability
and availability.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.1

time-oriented

response time

latency

throughput

productivity

spatial

positioning accuracy

working envelope

range

turning cycle

energy/power

energy consumption

range

standby time

maximum power

heat release

cooling capacity

algorithmic

sensitivity

specificity

accuracy

coverage

image quality

sharpness

contrast

color consistency

color rendition

streakiness

uniformity

reliability

MTBF

MTTR

uptime

unscheduled breaks

Performance Attributes

time-oriented

response time

latency

throughput

productivity

spatial

positioning accuracy

working envelope

range

turning cycle

energy/power

energy consumption

range

standby time

maximum power

heat release

cooling capacity

algorithmic

sensitivity

specificity

accuracy

coverage

image quality

sharpness

contrast

color consistency

color rendition

streakiness

uniformity

reliability

MTBF

MTTR

uptime

unscheduled breaks

Architecting System Performance; Defining Performance
108 Gerrit Muller

version: 0.1
July 3, 2023

ASPDPperformanceAttributes

Defining Performance

performance is a function of:

context

perception

circumstances

operation of interest

system of interest

specification

design

configuration

version

history

scenario

use case
1

1
a

use case in this context is rich (includes quantifications) and

broad (covers the operation of interest, not a single function)

generic, valid for the class of systems

normal and special cases

(worst case, degraded, exceptions, …)

instance specific

depends on individual human characteristics

Architecting System Performance; Defining Performance
109 Gerrit Muller

version: 0.1
July 3, 2023

ASPDPdefiningPerformance

Example EV Range Definition

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

S
p

e
e

d
,

k
m

/h

Time, s

New European Drive Cycle

http://en.wikipedia.org/wiki/New_European_Driving_Cycle#/media/File:New_European_Driving_Cycle.svg

Published under GFDL, thanks to Orzetto

Electric Vehicle

Driving Range

Range = f(

v(t),

Circumstances,

Driving style,

Car load,

Charging state,

Battery age)

A quantified Use Case

defines under what

circumstances the EV will

achieve the specified

range.

0

20

40

60

80

100

120

1200

Time, s

10008006004002000

S
p

e
e

d
 k

m
/h

Architecting System Performance; Defining Performance
110 Gerrit Muller

version: 0.1
July 3, 2023

SAFMdriveCycleExample

End-to-End Performance

tend-to-end = thuman activities + twait + televator handling + tmove

tmove
televator

handling 1

televator

handling 2

thuman

activities in

thuman

activities out
twait

press

button

arrive at

destination

floor

walk in walk out

nett moving

time

nett elevator time

end-to-end time

The end-to-end performance is the relevant performance as the

stakeholder experiences it: from initial trigger to final result.

Architecting System Performance; Defining Performance
111 Gerrit Muller

version: 0.1
July 3, 2023

MAPMendToEnd

Architecting System Performance; Measuring
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Measuring is an essential part of architecting performance. Measurements
provide quantified insight in actual behavior and performance. In this presen-
tation, we discuss measuring, benchmarking, and instrumentation.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

typical small testprogram

create steady state

ts = timestamp()

for(i=0;i<1M;i++) do something

te = timestamp()

duration = ts - te

small test programs

HW support

(computing) hardware

operating system

services

applications
instrumentation

small test programs

test suite

task manager

perfmon

ps, vmstat

small test programs

tools

OIT

visual inspection

small test programs

heapviewer

OS

m
e

m
o

ry

in
s
tr

u
m

e
n

ta
ti
o

n

processing

parametrized

processing

Performance Attributes in the Benchmark Stack

CPU

cache

memory

bus

..

(computing) hardware

typical values

interference

variation

boundaries

operating system

services

applications

network transfer

database access

database query

services/functions

duration

CPU time

footprint

cache

end-to-end

function

duration

services

interrupts

task switches

OS services

CPU time

footprint

cache

latency

bandwidth

efficiency

interrupt

task switch

OS services

duration

footprint

interrupts

task switches

OS services

tools

locality

density

efficiency

overhead

Architecting System Performance; Measuring
113 Gerrit Muller

version: 0
July 3, 2023

EBMIbenchmarkStack

Performance as Function of the Layers

hardware

operating system

services

applications

tools

system performance = f(,

,

,

,

)

w
h

at
 is

 u
se

d
?

h
o

w
 o

ft
en

?

h
o

w
 m

u
ch

d

o
es

 it
 c

o
st

?

Architecting System Performance; Measuring
114 Gerrit Muller

version: 0
July 3, 2023

EBMIperformanceFormula

Example µBenchmarks for Software

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Architecting System Performance; Measuring
115 Gerrit Muller

version: 0
July 3, 2023

RVuTimingBenchmarks

Measurement Errors and Accuracy

measured
signal

noise resolution

value

measurement

error

time

va
lu

e

+ε1

calibrationoffset

characteristics

measurements have

stochastic variations and

systematic deviations

resulting in a range

rather than a single value

-ε2

+ε1
-ε2

measurement

instrument

system

under study

Architecting System Performance; Measuring
116 Gerrit Muller

version: 0
July 3, 2023

MAMEmeasurementError

Be Aware of Error Propagation

tduration = tend - tstart

tend

tstart = 10 +/- 2 µs

= 14 +/- 2 µs

tduration = 4 +/- ? µs

systematic errors: add linear

stochastic errors: add quadratic

Architecting System Performance; Measuring
117 Gerrit Muller

version: 0
July 3, 2023

MAMEerrorPropagation

Intermezzo Modeling Accuracy

Measurements have

stochastic variations and systematic deviations

resulting in a range rather than a single value.

The inputs of modeling,

"facts", assumptions, and measurement results,

also have stochastic variations and systematic deviations.

Stochastic variations and systematic deviations

propagate (add, amplify or cancel) through the model

resulting in an output range.

Architecting System Performance; Measuring
118 Gerrit Muller

version: 0
July 3, 2023

MAMEintermezzo

Tools and Instruments in the Benchmark Stack

typical small testprogram

create steady state

ts = timestamp()

for(i=0;i<1M;i++) do something

te = timestamp()

duration = ts - te

small test programs

HW support

(computing) hardware

operating system

services

applications
instrumentation

small test programs

test suite

task manager

perfmon

ps, vmstat

small test programs

tools

OIT

visual inspection

small test programs

heapviewer

OS

m
e

m
o

ry

in
s
tr

u
m

e
n

ta
ti
o

n

processing

parametrized

processing

Architecting System Performance; Measuring
119 Gerrit Muller

version: 0
July 3, 2023

EBMIbenchmarkPositions

Architecting System Performance; Resource Management
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The management of the resources largely determines system performance. This
document discusses concepts related to resource management, such as caching,
concurrency, and scheduling.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.1

present

process or

compute

communicate

store

acquire

output

process

transport

store

input

virtual physical

raw

material
fetch

store

transport process transport process delivertransport

store store

product

Generic Resource Model

present

process or

compute

communicate

store

acquire

output

process

transport

store

input

virtual physical

raw

material
fetch

store

transport process transport process delivertransport

store store

product

Architecting System Performance; Resource Management
121 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMgenericResources

Design Considerations for Resource Management

Performance depends on resource utilization and management.

The design of the logistics, how does EMI
1
 flow through the resources,

is critical.

Critical design aspects are:

· concurrency (parallelism, pipelining)

· granularity of EMI

· scheduling (allocation of resources)

1
Energy Material Information

Architecting System Performance; Resource Management
122 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMdesign

Granularity as Key Design Choice

video frame

video line

pixel

unit of

synchronization

unit of

buffering

==

or

<>

==

or

<>

unit of

processing

==

or

<>

unit of

I/O

fine grain:

flexible

high overhead

coarse grain:

rigid

low overhead

Architecting System Performance; Resource Management
123 Gerrit Muller

version: 0.1
July 3, 2023

EACgranularity

Size versus Performance Trade off

ra
n

d
o

m
 d

a
ta

 p
ro

c
e

s
s
in

g

p
e

rf
o

rm
a

n
c
e

 in
 o

p
s
/s

data set size
in bytes

10
3

10
6

10
9

10
12

10
15

L1

cache

L3

cache

main

memory

hard

disk

disk

farm

robotized

media

10
9

10
3

10
6

fast technology

small

expensive

small capacity

large capacity

slow technology

large

low cost

staircase effect:

performance and

size are non-linear

with thresholds example data storage technology

Architecting System Performance; Resource Management
124 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMsizeVsPerformance

Pipeline pattern

production line = pipeline

car ncar n+1car n+2car n+3

lean uses the notion of tact

f.i. every 10 minutes the products

move to the next workspot

throughput = products/time

tproduction 1 car = tin - tout

Architecting System Performance; Resource Management
125 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMproductionPipeline

Y-chart Pattern

structure and

topology of

resources

design of

dynamic

behavior

system

performance

mapping

feedback

feedback

Architecting System Performance; Resource Management
126 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMyChart

Performance Pitfalls and Resource Management

Overhead (control, handling)

Starvation (underrun)

Saturation/stagnation (overrun)

Variation (duration, quality)

Serialization

Interference with other work

Unnecessary conversions or adaptations

Architecting System Performance; Resource Management
127 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMpitfalls

Architecting System Performance; Greedy and Lazy
Patterns

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Greedy and lazy are two opposite patterns in performance design. An extreme
application of both patterns is start-up, where greedy starts as much as possible,
and lazy as little as possible.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.1

logo
TBD

Greedy and Lazy Patterns

lazy

(on demand, pull)

greedy

(push, forecast)

what

benefits

do nothing until someone needs it

no resource usage unless needed

prepare time consuming operations,

when resources are idle

results are available immediately

some resource use is wastedtime to result depends on execution

time

disadvantages

when default to achieve required performance

(explore other concepts too!)

this pattern applies to all domains (IT, goods flow, energy)

Architecting System Performance; Greedy and Lazy Patterns
129 Gerrit Muller

version: 0.1
July 3, 2023

ASPGLpatterns

Start up of Systems as Example

initial

running

operating

start system

start operation

How much time does it take

to start a laptop with Windows?

How much time does it take

to start an application (e.g. Word)?

Architecting System Performance; Greedy and Lazy Patterns
130 Gerrit Muller

version: 0.1
July 3, 2023

ASPGLstartup

Example from Cloud Applications

data

base

server

web

server

client client

network

network

client

screen screen screen

presentation

computation

communication

storage

legend

Architecting System Performance; Greedy and Lazy Patterns
131 Gerrit Muller

version: 0.1
July 3, 2023

MAFTgenericBlockDiagram

Caching Pattern (Physical Grab Stock)

design parameters

caching algorithm

storage location

cache size

chunk size

format

performance issues

long latency (mass) storage

long latency communication

overhead communication

resource intensive processing

solution patterns

low latency

less communication

large chunks (less overhead)

processing once (keep results)

frequently used subset

in fast local storage

Architecting System Performance; Greedy and Lazy Patterns
132 Gerrit Muller

version: 0.1
July 3, 2023

ASPGLwhyCaching

Many Layers of Caching

back

office

server

mid

office

server

client client

network

network

client

screen screen screen

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

100 ms

10 ms

1 s

100 ns

1 ms

cache

miss

penalty

1 ms

10 µs

10 ms

1 ns

100 ns

cache hit
performance

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory
typical cache 2 orders

of magnitude faster

Architecting System Performance; Greedy and Lazy Patterns
133 Gerrit Muller

version: 0.1
July 3, 2023

MAFTgenericCaches

Disadvantages of Caching Pattern

robustness for application changes

ability to benefit from technology improvements

robustness for changing context (e.g. scalability)

robustness for concurrent applications

failure modes in exceptional user space

These patterns increase complexity and coupling.

Use only when necessary for performance.

Architecting System Performance; Greedy and Lazy Patterns
134 Gerrit Muller

version: 0.1
July 3, 2023

ASPGLcachingRisks

Architecting System Performance; Scheduling
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Scheduling plays a crucial role in resource allocation to get desired system perfor-
mance. This document discusses local and global scheduling.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0

assumptions Rate

Monotonic Analysis (RMA):

periodic tasks with

period Ti

process time Pi

load Ui = Pi/Ti

tasks are independent

RMA theory:

schedule is possible when:

Load = ∑i Ui ≤ n(2
1/n

-1)

for n = 1, 2, 3, ∞

max utilization is:

1.00, 0.83, 0.78, … log(2)

~= 0,69

Source: Ton Kostelijk - EXARCH course

Rate Monotonic Scheduling (RMS) uses fixed priorities

RMS guarantees that all processes meet their deadlines

Fixed priority -> low overhead

Single Resource Scheduling

Scheduling of time critical operations on a single

resource:

· Earliest Deadline First

optimal

complex to realize

· Rate Monotonic Scheduling

no full utilization

simple to realize

Architecting System Performance; Scheduling
136 Gerrit Muller

version: 0
July 3, 2023
ASPSCintro

Earliest Deadline First

• Constraints

• Determine deadlines in Absolute time (CPU cycles or msec, etc.)

• Assign priorities Process that has the earliest deadline

gets the highest priority

(no need to look at other processes)

Smart mechanism needed

for Real-Time determination of deadlines

Pre-emptive scheduling needed

EDF = Earliest Deadline First

Earliest Deadline based scheduling

for (a-)periodic Processing

The theoretical limit for any number of processes

is 100% and so the system is schedulable.

Architecting System Performance; Scheduling
137 Gerrit Muller

version: 0
July 3, 2023

PHRTedfPriorityAssignment

Exercise Earliest Deadline First (EDF)

Calculate loads and determine thread activity (EDF)

Source: Ton Kostelijk - EXARCH course

Suppose at t=0, all threads are ready to process the arrived trigger.

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5

Thread 3 23 5

Architecting System Performance; Scheduling
138 Gerrit Muller

version: 0
July 3, 2023

PHRTexerciseEDF

Rate Monotonic Scheduling

• Constraints

• Determine deadlines (period) in terms of Frequency or Period (1/F)

• Assign priorities Highest frequency (shortest period)

==> Highest priority

Independent activities

Periodic

Constant CPU cycle consumption

Assumes Pre-emptive scheduling

RMS = Rate Monotonic Scheduling

Priority based scheduling for Periodic Processing

of tasks with a guaranteed CPU - load

Architecting System Performance; Scheduling
139 Gerrit Muller

version: 0
July 3, 2023

PHRTrmsPriorityAssignment

Exercise Rate Monotonic Scheduling (RMS)

Calculate loads and determine thread activity (RMS)

Source: Ton Kostelijk - EXARCH course

Suppose at t=0, all threads are ready to process the arrived trigger.

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5

Thread 3 23 5

Architecting System Performance; Scheduling
140 Gerrit Muller

version: 0
July 3, 2023

PHRTexerciseRMS

RMS-RMA Theory

assumptions Rate

Monotonic Analysis (RMA):

periodic tasks with

period Ti

process time Pi

load Ui = Pi/Ti

tasks are independent

RMA theory:

schedule is possible when:

Load = ∑i Ui ≤ n(2
1/n

-1)

for n = 1, 2, 3, ∞

max utilization is:

1.00, 0.83, 0.78, … log(2)

~= 0,69

Source: Ton Kostelijk - EXARCH course

Rate Monotonic Scheduling (RMS) uses fixed priorities

RMS guarantees that all processes meet their deadlines

Fixed priority -> low overhead

Architecting System Performance; Scheduling
141 Gerrit Muller

version: 0
July 3, 2023
ASPRMrms

Answer EDF Exercise

Answers: loads and thread activity (EDF)

Source: Ton Kostelijk - EXARCH course

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5 33.3%

Thread 3 23 5 21.7%

88.3%

Architecting System Performance; Scheduling
142 Gerrit Muller

version: 0
July 3, 2023

PHRTexerciseEDFanswer

Answer RMS Exercise

Answers: loads and thread activity (RMS)

Source: Ton Kostelijk - EXARCH course

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5 33.3%

Thread 3 23 5 21.7%

88.3%

3 3 3

5

1 3

3 2

-1 ??

Architecting System Performance; Scheduling
143 Gerrit Muller

version: 0
July 3, 2023

PHRTexerciseRMSanswer

From Simple-Local to Complex-Global

A perspective on dynamic behavior is to view the system

as set of periodic behaviors.

Periodic behavior is easier to model and analyze, e.g.

using RMS and RMA.

Modern systems and Systems of Systems consists of

complex networks of concurrent resources.

Typically, a combination of more advanced global

scheduling is combined with simple local scheduling.

Architecting System Performance; Scheduling
144 Gerrit Muller

version: 0
July 3, 2023

ASPSCglobal

Architecting System Performance; Robust Performance
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Performance should be robust. The performance should be reproducable and it
should be well-behaving in extreme conditions.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: preliminary
draft
version: 0.2

#
 o

f
c
a

s
e

s

performance

smaller is betterwhat causes

this variation?

performance measurements

in standardized conditions

what causes

these outlyers?

Poorly understood variations require analysis

Variations are Suspect

#
 o

f
c
a

s
e

s

performance

smaller is betterwhat causes

this variation?

performance measurements

in standardized conditions

what causes

these outlyers?

Poorly understood variations require analysis

Architecting System Performance; Robust Performance
146 Gerrit Muller

version: 0.2
July 3, 2023

ASPRPvariation

Coping with Disturbances

time

p
e

rf
o

rm
a

n
c
e

s
m

a
lle

r
is

 b
e

tt
e

r
How does the system respond to disturbances?

How quickly does it recover?

How far does performance degrade?

steady state

performance

d
e

g
ra

d
a

ti
o

n

recovery time recovery time
d

e
g

ra
d

a
ti
o

n

disturbance disturbance

Architecting System Performance; Robust Performance
147 Gerrit Muller

version: 0.2
July 3, 2023

ASPRPdisturbances

Measure to Validate Working Range

load

tr

working

range

tmax

working

range

desired

linear

behavior

A system design assumption is often:

the performance of this function

{ is constant | is linear | doesn't exceed x | ...}

The working range is the interval where this

assumption holds

Architecting System Performance; Robust Performance
148 Gerrit Muller

version: 0.2
July 3, 2023

MAANworkingRange

Validate Understanding of System Performance

Characterize the system

Stress testing

Load testing

(Accelerated) Lifetime testing

where does the design fail?

(go beyond specified limits)

keep the system in heavy load condition

observe how it keeps performing

measure variations

age the system

observe how it keeps performing

use the system in varying conditions

measure performance

as function of the conditions

Architecting System Performance; Robust Performance
149 Gerrit Muller

version: 0.2
July 3, 2023

ASPRPvalidation

Bloating, Waste, and Value
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

A threat to performance is the combination of feature creep and technical debt.
This combination causes bloating of the design. In Lean terms, the combination
causes waste. A crucial question is where is the value, and is the value in balance
with the potential degradation of performance.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status: planned
version: 0

logo
TBD

From Feature Creep to Performance Problems

maturing of

systems

increasing

number of

features

(feature creep)

technical debt

bloating of

design

increase in

resource

usage

performance

problems

design

complexity

lack of

overview

insight

understanding

loss of knowledge

time effort gain

by taking

shortcuts

Bloating, Waste, and Value
151 Gerrit Muller

version: 0
July 3, 2023

BWVfeatureCreep

Technical Debt

Technical Debt is a metaphor used within the software

industry to communicate the consequences of pragmatic

design decisions deviating from the intended design of a

system

from: http://gaudisite.nl/INCOSE2016_Callister_Andersson_SMARTtechnicalDebt.pdf

based on Cunningham http://c2.com/doc/oopsla92.html

Bloating, Waste, and Value
152 Gerrit Muller

version: 0
July 3, 2023

BWVtechnicalDebt

Value versus Performance Degradation

increasing number of features

(feature creep)

technical debt

bloating of

design

increase in

resource

usage

performance

problems

design

complexity

lack of

overview

insight

understandingtime effort gain by taking

shortcuts

Are benefits (value) in balance with the costs (such as performance degradation)?

Bloating, Waste, and Value
153 Gerrit Muller

version: 0
July 3, 2023

BWVvalueEvaluation

Exploring bloating: main causes

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Bloating, Waste, and Value
154 Gerrit Muller

version: 0
July 3, 2023

EASRTbloating

Necessary functionality � the intended regular function

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Bloating, Waste, and Value
155 Gerrit Muller

version: 0
July 3, 2023

BLOATcoreFunctionality

The danger of being generic: bloating

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Bloating, Waste, and Value
156 Gerrit Muller

version: 0
July 3, 2023

GDbloatingVisualized

Shit propagation via copy paste

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Bloating, Waste, and Value
157 Gerrit Muller

version: 0
July 3, 2023

BLOATshitPropagation

Example of shit propagation

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Bloating, Waste, and Value
158 Gerrit Muller

version: 0
July 3, 2023

BLOATshitPropagationExample

Bloating causes more bloating

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating, Waste, and Value
159 Gerrit Muller

version: 0
July 3, 2023

EASRTbloatingCausesBloating

Causes even more bloating...

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code
p

o
o

r
d

e
s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Bloating, Waste, and Value
160 Gerrit Muller

version: 0
July 3, 2023

EASRTbloatingCausesBloatingMore

