Architecting System Performance all slides
by Gerrit Muller
TNO-ESI

Abstract

Architecting System Performance applies and elaborates the course Architectural
Reasoning Using Conceptual Modeling to architect performance of systems. We
teach an architecting method based on many views and fast iteration of the views.
Visual models, functional models, and mathematical models in all views are the
means to communicate about the system, to discuss specification and design
choices, to reason about consequences, and to make decisions.

Distribution

This article or presentation is written as part of the Gaudi
project. The Gaudi project philosophy is to improve

by obtaining frequent feedback. Frequent feedback is

pursued by an open creation process. This document July 3, 2023
is published as intermediate or nearly mature version to status: preliminary
get feedback. Further distribution is allowed as long as draft

the document remains complete and unchanged. version: 0.4

Architecting System Performance; Course Overview

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Course overview of the course Architecting System Performance.

Distribution
Thi icl ion i i f the Gaudi j The Gaudi j JU|y 3, 2023

is article or presentation is written as part of the Gaudi project. e Gaudi project . Pt
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0.3

Nuggets Architecting System Performance

. Course introduction

8. Emerging Behaviour

time-oriented performance

. Managing system performance

9. Budgeting

15. Measuring Performance

. Course didactics

10. Modeling Paradigms

16. Resource Management

. Connecting breadth and depth

11. Applications and Variations

17. Greedy and Lazy Pattern

. Performance Modeling

12. Model Analysis

18.Scheduling

. Level of Abstraction

13. Reasoning Approach

19. Robust Performance

. Visualizing Dynamic Behavior

14. Defining Performance

20. Bloating, Waste, and Value

Architecting System Performance; Course Overview Veﬂ%ﬂ?@fgoofe’,
3 Gerrit Muller ASPCOnuggets ESI

Assignments in Face-to-Face Module

0. elevator case

supersystem system subsystem
1. sketch the problem key performance main critical
goal use case parameters concepts technologies

2. make conceptual model of the current

situation

e model dynamic behavior

e model 0-order kpp using functions (as
simple as possible)

e quantify contribution to kpp using
observed data

3
e develop story
[
[

model workflow and performance
model customer value as function of kpp

. explore customer and business relevance

4. make conceptual model of potential
solutions

e model the foreseen solution

e model & compare 2 alternative solutions

5. list questions and uncertainties, reformulate problem and goal, and formulate gaps and options

6. develop an elevator pitch to report you findings and recommendations to management

Architecting System Performance; Course Overview

4

Gerrit Muller

. I
version: 0.3
July 3, 2023
MAOassignments

Architecting System Performance; Course Material

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Listing the course material for Architecting System Performance

Distribution | 0go
This article or presentation is written as part of the Gaudi project. The Gaudi project

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an JUly 3! 2023 TB D
open creation process. This document is published as intermediate or nearly mature version status: p|anned

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0.1

Colofon

The ASP™ course is partially derived from the
EXARCH course developed at Philips CTT by
Ton Kostelijk and Gerrit Muller.

Extensions and additional slides have been
developed at ESI by Teun Hendriks, Roland
Mathijssen and Gerrit Muller.

Architecting System Performance; Course Material veszuilty)rej:ZOO.;3
6 Gerrit Muller PERFcolofon ESI

Elevator: Hands-on Intro to Performance Modeling

core
Physical Models of an Elevator
http://www.gaudisite.nl/info/ElevatorPhysicalModel.info.html

optional
Teaching conceptual modeling at multiple system levels using multiple views
http://www.gaudisite.nl/CIRP2014 Muller_TeachingConceptualModeling.pdf
Understanding the human factor by making understandable visualizations
http://www.gaudisite.nl/info/UnderstandingHumanFactorVisualizations.info.html

Architecting System Performance; Course Material version: 0.1
. uly 3, 2023
7 Gerrit Muller ASPmaterialElevator ESI

Course Didactics

core
Architecting System Performance; Course Didactics
http://www.gaudisite.nl/info/ASPcourseDidactics.info.html

optional
DSRP: https://en.wikipedia.org/wiki/DSRP

Assumptions: “Systems Engineering and Critical Reflection: The Application of
Brookfield and Goffman to the Common Experiences of Systems Engineers” by
Chucks Madhav; proceedings of INCOSE 2016, in Edinburgh, GB

70/20/10:
http://charles-jennings.blogspot.nl/

https://www.trainingindustry.com/wiki/entries/the-702010-model-for-learning-and-
development.aspx

http://jarche.com/2015/11/the-bridge-from-education-to-experience/

Reflection: “The Reflective Practitioner: How Professionals Think In Action” by
Donald Schon, ISBN-10: 0465068782, Basic Books USA

Assumptions and beliefs:
https://pivotalthinking.wordpress.com/tag/ladder-of-inference/
http://stwj.systemswiki.org/?p=1120

Architecting System Performance; Course Material version: 0.1
. uly 3, 2023
8 Gerrit Muller ASPmaterialDidactics ES I

Greedy and Lazy Patterns

core
Architecting System Performance; Greedy and Lazy Patterns
http://gaudisite.nl/info/ASPgreedyAndLazy.info.html

optional
Fundamentals of Technology

http://gaudisite.nl/MAfundamentalsOfTechnologyPaper.pdf

Architecting System Performance; Course Material vegsugggrzgég
9 Gerrit Muller ASPmaterialGreedyLazy ESI

Measuring

core
Architecting System Performance; Measuring
http://www.gaudisite.nl/info/ASPmeasuring.info.html

optional
Performance Method Fundamentals
http://www.gaudisite.nl/PerformanceMethodFundamentalsPaper.pdf

Measurement issues; From gathering numbers to gathering knowledge by Ton
Kostelijk http://www.gaudisite.nl/MeasurementExecArchSlides.pdf

Modeling and Analysis: Measuring
http://www.gaudisite.nl/MAmeasuringPaper.pdf

Exploring an existing code base: measurements and instrumentation
http://www.gaudisite.nl/info/ExploringByMeasuringlnstrumenting.info.html

Architecting System Performance; Course Material veggllgg:zg-zg
10 Gerrit Muller ASPmaterialMeasuring ES I

Architecting System Performance; Managing System
Performance

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation presents the ideas behind the course Architecting System
Performance. A number of frameworks and mental models show the context of
this course and the approach to performance advocated in this course.

Distribution

Thi ticl tation i itt t of the Gaudi ject. The Gaudi ject JU|y 3, 2023) >
is article or presentation is written as part of the Gaudi project. e Gaudi projec . P > I

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary llllllllll

open creation process. This document is published as intermediate or nearly mature version draft w..i"ci‘n'piﬁiii?;’fw

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0.2

Architecture Top View

customer value business
proposition proposition
\O’ .\(Q @(9/ O)/
S R S

system
requirements

——enables—p

<=0V QS

system deéign &
technology

Architecting System Performance; Managing System Performance
12 Gerrit Muller

version: 0.2
July 3, 2023
ARCVtopView

SN EsI

Performance Playing Field

consumer experience
enterprise performance:

customer value
proposition

enterprise productivity
enterprise throughput
enterprise response time

\

business competitiveness
proposition service response time
/4 / service cost

&

N AQ’

/}

Performance attributes
require means for analysis
evaluation, and creation of

at all levels.

Hence, we need conceptual
modeling at all levels.

structure (parts and interfaces)
and dynamic behavior (functions)

system

system performance:
system productivity

<@=drives

_‘requirements

——enables—»|

system throughput
system response time

technical concepts for:
resource management

system design

internal logistics
processing

Architecting System Performance; Managing System Performance

13 Gerrit Muller

. I
version: 0.2
July 3, 2023
ASPClplayingField

What and Why to Model

how well is the customer served?

how credible becomes the solution? purpose and type of model
how much are time and effort reduced? depend on project life cycle
how much is the risk reduced?
how much is the solution improved? type of model and views
depend on purpose
customer modeling

feasibility .. _

key drivers communication SIEEIEIET TG

isks ekipegiey credibity of resuts
exploration y :
velfeEmen level .of abstraction

working range
calibration of model
) X robustness of model
business business as time to first results and feedback
usual effort

k.ey drivers (no modeling) evolvability |

risks S (adaptation to new questions)
historic data
competitive data

how much effort is needed to create model(s)?
how much effort is needed to use and maintain model(s)?
how much time is needed to obtain useful result?

Architecting System Performance; Managing System Performance version: 0.2
14 Gerrit Muller MAOwhyWhatWhen ES I

Modeling Evolves over Time

>understanding> exploration > optimization > verification >

project —determiness| Po1P95C o —determines- e Qing
phase the model model

Architecting System Performance; Managing System Performance version: 0.2
15 Gerrit Muller ASPCOwhyModeling ES I

The Modeler's Mindset Evolves 100

>understanding> exploration > optimization > verification >

=] : L=
Explorative

what i1s needed?
what can be achieved?

Defensive
what are the risks?
will the system perform well?
how to mitigate shortcomings?

Architecting System Performance; Managing System Performance version: 0.2
16 Gerrit Muller ASPCImindsetModeling ES I

The Architect Can Be "Out of Phase”

>understanding> exploration > optimization > verification >

- - >
Explorative

what I1s needed?
what can be achieved?

Defensive
what are the risks?
will the system perform well?
how to mitigate shortcomings?

T “look ahead”—»T

mindset of most mindset of
stakeholders architect

Architecting System Performance; Managing System Performance version: 9.2
17 Gerrit Muller ASPCloutOtPhase ES I

10 Fundamental Recommendations

principles

use feedback
work incremental
work evolutionary

be explicit
make issues tangible

objectives

support communication

facilitate reasoning

translate into

help to
achieve

-

support decision making

understanding
insight
overview

create
maintain

<

translate into

-

recommendations

Time-box

lterate

Quantify early

Measure and validate

Multiple levels of abstraction

(Simple) mathematical models

Analysis of accuracy and
credibility

Multi-view

help to achieve

System and its context

Visualize

Architecting System Performance; Managing System Performance

18

Gerrit Muller

MAQOrecommendations

version: 0.2
July 3, 2023

SN EsI

lterative Performance Management during Development

measure determine most
evaluate Important and critical
analyse requirements

‘i‘

model
simulate analyse constraints
build proto and design options

Architecting System Performance; Managing System Performance version: 9.2
19 Gerrit Muller EAAspiral ES I

Managing Performance during Product Development

design
estimateand @ eee=- specification

uncertainty

@® measurement

()
v 1000 - ;
S Incomplete
= : :
understanding \ , @ design
i robustness—i fnished
problem product
100 deccnccaes A PR

- ibrati degrading
3 call rgtlon performance
C Input
Q .
l time—»

Architecting System Performance; Managing System Performance version: 0.2 m —
BWMAquantificationInTime ESI

20 Gerrit Muller

Quantification Steps

10 30 100 300
| | | |
back of the order of magnitude
envelope 30 300
guestimates
benchmark, 50 P00
spreadsheet calibrated estimates
calculation < >
70 140
measure, cr ey
analyze, feaSJE'“ty
simulate 90 115
cycle

accurate 99.999 =p<4¢—100.001

Architecting System Performance; Managing System Performance version: 0.2
21 Gerrit Muller BWMAquantificationSteps ES I

Architecting System Performance; Course Didactics

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The didactics behind a course like Architecting System Performance is a
challenge, because the learning goals relate mostly to attitude and ways of
thinking. At the same time, the material covers methods, techniques, tools, and
concepts, which may lure participants in mechanistic approaches. Core in the
didactic approach is reflection. This presentation offers some "thinking models” to
assist reflection.

mental switch
. . . from problem/system flips team 4 flips team 1
Distribution to “meta”

i - o o July 3, 2023 Y
This article or presentation is written as part of the Gaudi project. The Gaudi project tatus: reIiminar eeeeeeeeee oes team1
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an S us: p y vl ifl fl;z]
open creation process. This document is published as intermediate or nearly mature version draft = b TE,
to get feedback. Further distribution is allowed as long as the document remains complete flpsteam 3 fiips ¢

and unchanged. version: 0.1

Competence Requires Various Learning Styles

what

Attitude

Ability

Skills

Knowledge

lecturing
exercises

how
o) C
£ 0
< O
") %9
+— Y
CGJ OCD
Q & O o
&=
c O
o0
n O
N
qv]

who

teacher/coach

participant

Architecting System Performance; Course Didactics

23

Gerrit Muller

version: 0.1
July 3, 2023

AACLcompetenceProgram

SN EsI

Bloom’s Taxonomy and Higher Order Thinking Skills

.
/,réui\w Higher Order Thinking Skills

. more difficult to teach
luat more valuable
cevaluating takes time to develop

"""""""""" /analyzmg\ﬁj -
/ applying \
/ understanding \
/ remembering \ D

A

must be mastered before,
however when missing
can be acquired fast

. Lower Order Thinking Skills
people can acquire them fast

24 Gerrit Muller ASPCDbloo

Architecting System Performance; Course Didactics version: 0.1 m E SI
msTaxonomy

Course Assumption:

This course focuses on Higher Order Thinking Skills.
We assume
that you have appropriate knowledge
and
that you are able to find and absorb

required specific knowledge fast.

Architecting System Performance; Course Didactics Veﬂ%ﬂ?@'goo'zl,
25 Gerrit Muller ASPCDknowledgeAndLOTS ESI

Problem-Based Learning Using Reflection

experiencing

observing

C applying) C reflecting)
testing analyzing
Interpreting
explaining

generalizing

| conceptualizing
source: Kolb's learning cycle
http://www.infed.org/biblio/b-explrn.htm

Architecting System Performance; Course Didactics version: 0.1
26 Gerrit Muller RASAcycle ESI

Role of Experience in Learning

70:20:10 learning model

70: Experience

" Modeling
Coaching
Scaffolding
20: Exposure Articulation

Reflection https://en.wikipedia.org/wiki/
10: Education Exploration Cognitive_apprenticeship

Architecting System Performance; Course Didactics vegsuilggrzg-zg
27 Gerrit Muller ASPCD702010 ESI

DSRP Model

A not A
Making Distinctions -—>
Distinction
[
"O |Organizing Systems
g System
al
o R izing Relati hi
ecognizing Relationships - >
(é) ° J P Relation
Y \'d
Taking Perspectives @
P A Perspective

Architecting System Performance; Course Didactics veg%}ggrzgég
28 Gerrit Muller ASPCDdsrpModel ESI

Separate Reflection Wall

mental switch

from problem/system flips team 4 flips team 1
to “meta”
how, what, why? Q) 2 @
G
. 50 O O .
reflection team 4

wall

2R R
o
o BB
team 3 team 2

flipsteam 3 flips team 2

Architecting System Performance; Course Didactics vegsuilggrzgég
29 Gerrit Muller ASPCDroomLayout ESI

Scope and Topic of Reflection

operational or organization principle
life cycle context :
project pProcess or
system of (el method
interest & procedure or
technique
component
or function N tool or
of interest iIndividual notation
technical psychosocial means

Architecting System Performance; Course Didactics version: 0.1 —
30 Gerrit Muller TR E S I

The Role of Assumptions and Beliefs in Thinking

/\ The “Ladder of Inference” originally

proposed by Chris Argyris and developed
by Peter Senge and his colleagues [The

Fifth Discipline Fieldbook] illustrates how

these biases can be built into our thinking.

adopt beliefs https://pivotalthinking.wordpress.com/tag/ladder-
of-inference/

take actions

draw conclusions

make assumptions reflexive loop

add meaning

select data

beliefs influence
what we observe

observe data

after https://pivotalthinking.files.wordpress.com/2011/11/plain-inference.png

Architecting System Performance; Course Didactics version: 0.1
. uly 3, 2023
31 Gerrit Muller ASPCDladderOfinference ESI

Architecting SysteDm Pﬁrformance; Connecting Breadth and
ept

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

System Performance plays a crucial role in the customer value proposition and the
business proposition. Minor details deep down into the system may have a large
impact on system performance, and hence on both value propositions. Challenge
in architecting system performance is to connect both worlds, which are mentally
far apart.

10°
100 ;e
100 £8

50T

Distribution 10°
Thi ticl tation i itt t of the Gaudi ject. The Gaudi ject JU|y 3, 2023 .

is article or presentation is written as part of the Gaudi project. e Gaudi projec . H 10°
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary 10°
open creation process. This document is published as intermediate or nearly mature version draft 107

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

Organizational Problem: Disconnect

What does Customer need
in Product and Why?

Customer Application Functional Conceptua Realisation

objectives

decisions

parts
connections

and growing every year...!

SUOISIOBP 221112 3Y) aJe 1.y

pazijeal ag 1onpoud syl ued MoH

33 Gerrit Muller RATW(disconnect

Architecting System Performance; Connecting Breadth and Depth version. GN’ E SI

Architect: Connecting Problem and Technical Solution

What does Customer need How can the product be realized
in Product and Why? What are the critical decisions
Customer Application Functional Conceptual Realisation

objectives

5 . .
10 decisions
6
10 parts
7 =
10 gonnectlons

and growing every year....

Architecting System Performance; Connecting Breadth and Depth Vﬁlrysgogézg
34 Gerrit Muller RATWbreadthAndDepth ESI

Major Bottleneck: Mental Dynamic Range

=
o
o

number of
details
system
architect

N ﬁ
3 < o
10 IS c
. '
()]
10t UG E I,
" z 3
10 ; s ¢
10° &
()]

100 10 1

Architecting System Performance; Connecting Breadth and Depth Vﬁ{;sisogézg
35 Gerrit Muller RATWmentalDynamicRange ES I

Breadth

surrounding systems

supply | | receive manage

|

stakeholders

concerns System of regulations
rocesses

_needs Interest P ;

Interests . procedures

supporting systems

train plan | ¢+ |maintain

Architecting System Performance; Connecting Breadth and Depth version: 2
36 Gerrit Muller CBADbreadth ESI

Depth

Devilish details in design space may have large impact on performance.
Many detailed design decisions determine system performance.

4 : R
design space

resource management
process, transport, store, in/out

A

internal logistics system
concurrency, processes performance

processing

algorithms, machining, ...
N J

Architecting System Performance; Connecting Breadth and Depth Vﬂ;isogézg
37 Gerrit Muller ASPBDdepth ESI

Modeling and Analysis; Performance Modeling

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Principles and concepts of modeling performance.

Distribution

July 3, 2023
This article or presentation is written as part of the Gaudi project. The Gaudi project . H
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft

to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

version: 0

Empirical versus First Principle Models

Empirical model: a model based on
observations and measurements.

An empirical model describes the
observations.

An empirical model provides no
understanding.

empirical model tyove elevator

10

tmoe =a@*N+Db

floors
meters

5 10
15 30

First principle model: a model based
on theoretical principles.

A first principle model explains the
desired property from first principles
from the laws of physics.

A first principle model requires values
for incoming parameters to calculate
results.

first principle model tio, fioor €l€evator
ds dv da

v= — a= — = —_—

J
dt dt dt

Position in case of uniform acceleration:

S;=Sg + vt + 20 !

s / v

1 t
? Aot a
>

[

tiop floor = ta + by + ta > TS
2 = Vinax | @max

S(t) = 5 * Ama*

Siinear = Stop fioor = 2 * S(ta)

ty = Siinear / Vimax

t—>

Modeling and Analysis; Performance Modeling
Gerrit Muller

version: 0
July 3, 2023
MAPMempirical

SN EsI

Conceptual = Hybrid of Empirical and First Principle

Conceptual model: a model
explaining observations and
measurements using a selection of
first principles.

A conceptual model is a hybrid of
empirical and first principle models;
simple enough to understand and to
reason, realistic enough to make
sense.

20

10

bstart/stop 7

conceptual model tove elevator

tmove = Vmax * N + bstart/stop
5 10 floors
15 30 meters
' '
s v

T
/'\\ a
F/]
s\
G otatp tjtat

bstarustop = f(acceleration, jerk)

\

S0S1S2S3S4Sst™>

Modeling and Analysis; Performance Modeling
40 Gerrit Muller

version: 0
July 3, 2023
MAPMconceptual

SN EsI

From Zero to Higher Order Formulas

most simple

th . . -
O" order main function order of magnitude
main parameters constant velocity

ttop floor — Stop floor / Vmax

Improved estimation

st o |
1> order add most significant constant acceleration
secondary contributions tiop floor = Stop fioor / Vimax

2
- amax* ta /Vmax + 2 * Vmax / amax

more accurate, understanding

nd :
2~ order add next level of constant jerk
COﬂtribUtionS ttop floor ~— Stop floor/ Vmax - amax* ta2/ Vmax

+ 2 * Vimax [@max T 2 * @max / Jmax

Modeling and Analysis; Performance Modeling version: 0 p—
41 Gerl’lt MU”er MAI%IME_)rders ESI

Architecting System Performance; Level of Abstraction

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

A recurring question in modeling and perfromance analysis is when to stop
digging. What level of detail is needed to achieve acceptable performance? What
level of abstraction result in credible and sufficiently accurate resulis? How to
cope with many levels of abstraction?

Distribution 2%

This articl ion is wri f the Gaudi project. The Gaudi proj July 3, 2023 |
is article or presentation is written as part of the Gaudi project. e Gaudi project . Pt

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary

open creation process. This document is published as intermediate or nearly mature version draft

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

Level of Abstraction Single System

T 10°
S 10
2%
i~ 2
= - 10 system
| 103 requirements
10* multidisciplinary
i design
10

static system definition
monodisciplinary

Architecting System Performance; Level of Abstraction version: 9
43 Gerrit Muller RAPpyramid ES I

From system to Product Family or Portfolio

100 4 o 10°
s system —— portrolio
100 2 o Y P 10*
33
10° EZ 102
2 systems
10° | 10°
10* multidisciplinary 10*
10° multidisciplinary 10°
6 6
10 monodisciplinary 10
10’ 10’
Increase o 10°
monodisciplinary
10°
Architecting System Performance; Level of Abstraction version: 0
44 GegrrityMuller DRAprrin?i/dSG’r%(\j\iﬁ m E S I

Product Family in Context

enterprise context

enterprise

=
-
[@))

number of
detalls
H
o
(@)

106 multidisciplinary design

<+—

109 parts, connections, lines of code

Architecting System Performance; Level of Abstraction version: 9
45 Gerrit Muller RAPdiabolo ES I

The seemingly random exploration path

thinking path
of an architect
during
a few minutes
up to 1 day

subject—»
10 1/20 6\' 13
A 4
10° 7
10° 2/19
10 14
»
107 3 7
S 4
3/18
10° T v
o 8 T—
l 9 / 11\ 15
10° 16 *

Architecting System Performance; Level of Abstraction
46 Gerrit Muller

version: 0
July 3, 2023
BWMAexplorationPath

SN EsI

Coverage of problem and solution space

/ covered or touched by architects

subjects >

<+—Jevel of detail

\ covered by engineers and experts

Architecting System Performance; Level of Abstraction versions 3
47 Gerrit Muller BWMAcoverage ES I

Many Levels of Abstraction

L T A ey performance > I\
o 10 £
o < performance definition > g
ED 102 c| S
= 5| 5

T A A elaborated use cases) 5| S

© (7p)
10° s| §
-- performance models 5| <
10° multidisciplinary 2 -%
TR S budgets and 1 &
measurements s| =
10’ g %
--------------------- component designs IS
108 ©
monodisciplinary ©
0 L\ killing details \

Architecting System Performance; Level of Abstraction versions 3
48 Gerrit Muller ASPLAlevels ESI

Fidelity Properties

100 4 low fidelity
10 O P low effort
s .. ‘ fast

= hStﬁjker what fidelity is needed for:)
10 | / NOErs planning

4 training
10 validation
10° _ tidisciol design exploration?

ENLEITSE I FEETATEr what configurations do we need?

10° what can we afford? y

7 . . .
10 high fidelity
108 large effort

9 enterprise context % monodisciplinary slow
107

Architecting System Performance; Level of Abstraction Vﬂfisogézg
49 Gerrit Muller ASPLAproperties ES I

Visualizing Dynamic Behavior

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Dynamic behavior manifests itself in many ways. Architects need multiple comple-
mentary visualizations to capture dynamic behavior effectively. Examples are
capturing information, material, or energy flow, state, time, interaction, or commu-
nication.

Distribution

July 3, 2023
This article or presentation is written as part of the Gaudi project. The Gaudi project . (S
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft
to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

Overview of Visualizations of Dynamic Behavior

Information Transformation Flow

get
external

data
L
get (ranslorm == detect classify analyze
sensor into ima e sensor objects objects situation
data g images) 2

getGPS calculate r__
GPS T
G location update
location)

get goal

determine
next step

world model

Timeline and Functional

Flow

Signal Waveforms

TR
«—TE——» typical TE|

5..50ms
RF transmit receive

[\ [\ ¢/
Gy — —

— days =

9710711 12]13' 14] 15" 16117 18 ' 19] 20 21| 2223 24 25

@V@CD

o]
e — —
[| L&H [

i
i

i ——

2 e L=
g

Abstract
Workflow

sembly, et
f)
unctional test ueriovery
- — 10
bing and
EED wireline BOP

Flow of Light

\/ \ mamals,

JTTIO {sensor
laser iluminator

puse-fieq, bW, uniformity el

wavelengin,

© 0600600
®

wbing and
ireling
hook up SFT ROV assisted
and TF disconnect
move away from
.
ROV assisted retrieve SFT and
connect L

ook up coil ‘

® 0

tubing and

wireline BOP.
System function
and connection
seal test

run coil tubing
and wireline

©

disassembly

©

v

Information Centric Processing
Diagram

= raw ».| €nhanced | ‘ resized

i image >

retrieve | IMag€ | enhance g inter-
polate

e
image [Jookup ‘ image | merge display

o
£
o g
s F_
3 = 2 T w
o = 3 s 2 =
7 _ 5 o
e 23 2 z2 E B «
3 o s £ 8 & o 3
4 - ? = 5o
$3 52 2 2z & 8532
> =2 0 7]] ° g8 g @ 2 oE
s a3 834 2
-] S ©g = e & o 2 o8
g w £ = oS 8 actual workover operation 3 ¢ H 234
c] =B — s 2 s s 5
€53 g g8 2 48 hrs T 2 ¢ g gg
36 hi ~——finishing 27 hrs———»
[oal ferred 4Evesume
stop D operation 62 hrs- produclwon
! | | ! | ! |
24 48 72 96
hours———»

Swimming Lanes
Concurrency and Interaction

State Diagram

idle

i.....------: lstart

| operating
l event reset
| pre-alarm mode alarm handled

l acknowledge

| alarm mode

cleanwafer ~ peeeceeeeas
= D
robot — 4
prealign
clean
master
prefill
print
T T T ' . .
0 100b 200b

Visualizing Dynamic Behavior

51

Gerrit Muller

version: 0
July 3, 2023
VDBoverview

SN EsI

Example Functional Model of Information Flow

gL et goal
external g. 9
data trajectory
[. [
get transform | —» ILEE detect classify Uperelis analyze determine
sensor > .) 2—» Sensor —» . > . » world » . >
data L into image[’ images objects objects model situation next step
calculate
geé;:S — GPS -
location update
location
estimate |

getv,a —>

location world model

Visualizing Dynamic Behavior Vﬁlrysuso%zg
52 Gerrit Muller BSEARfunctionalModel ESI

"Cartoon” Workflow

ri ri ri i ri i
TF TF TF
EDP SFT SFT SFT
LRP WOCS WOCS WOCS SFT |\WOCs SFT [\|wWOCS SFT WOCS
vessel or vessel or vessel or vessel or vessel or vessel or
platform platform platform platform platform platform
‘ ‘ o < ‘
LRP
riser riser
EDP EDP
LRP LRP
ri ri ri
DL) = ()
TF TF
SFT SFT EDP SFT
SET WOCS SFT WOCS SFT |\wOCs WOCS WOCS LRP WOCS
vessel or vessel or vessel or vessel or vessel or vessel or
platform platform platform platform platform platform
EDP
LRP
riser riser
EDP EDP
LRP LRP
i iZi i i version: 0
Visualizing Dynamic Behavior R

53

Gerrit Muller

SSMEtypicalWorkoverOperationCartoon

Workflow as Functional Model

|)
perform
assembly,
. workover
functional test ;
operations -
D) oo | () ig
retrieve coil
fun tubing and
AR wireline BOP TF o
@ - - wireline
unhook coil L coil tubing BOP
run risers tubing and
@ wireline BOP SFT WOCS
| | | |
hook up SFT ROV assisted vessel or
and TF disconnect platform
o= :
move away from
move above well
well .
@ @ riser
| | |
ROV assisted retrieve SFT and
connect TF
| | |
hook up coil
tubing and retrieve risers EDP
wireline BOP
@ et . @ LRP
system function retrieve
5
- . @ well
run coil tubing : e
disassembly

and wireline

O) v

Visualizing Dynamic Behavior Vﬁll’ysgo%zg
54 Gerrit Muller SSMEtypicalWorkoverOpération ES I

Workflow as Timeline

assumptions:

running and retrieving risers: 50m/hr

running and retrieving coiled tubing/wireline: 100m/hr

actual workover operation

depth: 300m

()

=

©
E o
- =
0OS)
mn o2 0 2
) cQ =
5 © = 0> C_G o))
+— c (OIS beb) c
e © =58 0 5
> = o») S50 © T
S a 3 o fua c 2
€ 0 o > 283 828 g

d—

N c 5 o OOO c 5
© 2 < £ Exe 2 =2

48 hrs

retrieve coiled tubing/wireline

move away from well
retrieve SFT and TF
retrieve EDP/LRP

retrieve risers
disassembly

<«——preparation 36 hrs———»

<——finishing 27 hrs——»

stop production - deferred operation 62 hrs »| (ESUME
production
| | | | | |
24 48 72 96
hours >
Visualizing Dynamic Behavior Vﬁll‘ysgg%zg

55

Gerrit Muller

SSMEtypicalWorkoverOperationTimeline

SN EsI

Swimming Lane Example

clean wafer ccsscscsss : e
robot - g 0 .'- ' -
prealign
clean
master
prefill
print I- --------------------
0 100b 200b

Visualizing Dynamic Behavior version: 0
; y 3, 2023
56 Gerrit Muller REPLIcellTimeLineSimplified ESI

Example Signal Waveforms

by h.). imaging=
" | eee N repeating similar pattern
= U1 many times
G,=0 G,=127
-
» typical TE:
5..50ms
RE transmit receive
Gz / \
Gx _/_\ / N/
\ [/ a— /
Gy /7 \“—~»«d N— \

Visualizing Dynamic Behavior VIO _——
57 Gerrit Muller MRimaging ESI

Example Time Line with Functional Model

functional flow

call family doctor

visit family doctor

call neurology department

visit neurologist

call radiology department

examination itself

diagnosis by radiologist

report from radiologist to
neurologist

visit neurologist

—— days —»

AA YY. y

1 2 3 4 5|6 7 8 9 10 11 12 13 14|15 16 17 18 19|20 21 22 23 24 25

Visualizing Dynamic Behavior Vﬁlrflsogézg
58 Gerrit Muller MRendToEndTimeLine ESI

Information Centric Processing Diagram

text
—
gfX =
raw enhanced resized grey- view-
q.) lﬁ |ma B lq . cq Value q] lq
retrieve | Mage enhance 9 inter- | IMagde | |ookup image | merge port | display
late
po

Visualizing Dynamic Behavior version: 0
; uly 3, 2023
59 Gerrit Muller MICVprocessingCachedPixmaps ES I

Example State Diagram

 ide
lstart

[operating
l event reset

[pre-alarm mode alarm handled
l acknowledge

[alarm mode

Visualizing Dynamic Behavior version: 0
: uly 3, 2023
60 Gerrit Muller VDBstateDiagram ESI

Flow of Light (Physics)

[)
L

sensor

laser Hluminator
:) reticle
pulse-freq, bw, uniformity
wavelength, ..

==

<l > NA
abberations

==

] >

transmission

lens

erial image
wafer

Visualizing Dynamic Behavior Vﬁll‘ysgo%zg
61 Gerrit Muller TSAITphysicsView ES I

Dynamic Behavior is Multi-Dimensional

How does the system work and operate?
Functions describe what rather than how.
Functions are verbs.
Input-Process-Output paradigm.)
Multiple kinds of flows:

physical (e.g. hydrocarbons, goods, energy)

multi-dimensional
Information (e.g. measurements, signals) >~ information and

dynamic behavior
control

Time, events, cause and effect

Concurrency, synchronization, communication

Visualizing Dynamic Behavior version: 0
; uly 3, 2023
62 Gerrit Muller VDBkeyPhrases ES I

Modeling and Analysis: Emerging Behavior

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The essence of a system is that the parts together can do more than the separate
parts. The interaction of the parts results in behavior and properties that cannot
be seen as beloning to individual parts. We call this type of behavior "emerging

behavior”.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023

status: preliminary
draft

version: 0

eeeeeeeeeeeeeeeee

eeeeeeeeee

ddddddddd

ddddddd

Emergence is Normal and Everywhere

emergent behavior and properties =

function of

dynamic interaction between

parts in the system and

context of the system

e flying and stalling of an airplane
e Tacoma bridge resonance

examples

Modeling and Analysis: Emerging Behavior

64

Gerrit Muller

version: 0
July 3, 2023
MAEBemergence

SN EsI

Emergence, Desire, and Foreseeing

foreseen mitigated

foreseen, but

goal of design

underestimated risk side-effect
unforeseen risk side-effect
undesired desired

Modeling and Analysis: Emerging Behavior
65 Gerrit Muller

. I
version: 0
July 3, 2023
MAEBmatrix

Modeling and Analysis: Budgeting

by Gerrit Muller TNO-ESI, HSN-NISE
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation addresses the fundamentals of budgeting: What is a budget,
how to create and use a budget, what types of budgets are there. What is the
relation with modeling and measuring.

Distribution
Thi icl ion i i f the Gaudi j The Gaudi j JU|y 3, 2023

is article or presentation is written as part of the Gaudi project. e Gaudi project . Pt
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 1.0

Budgeting

content of this presentation

What and why of a budget

How to create a budget (decomposition, granularity, inputs)

How to use a budget

Modeling and Analysis: Budgeting

67

Gerrit Muller

version: 1.0
July 3, 2023
MABUCcontent

SN EsI

What is a Budget?

Abudget is

a quantified instantation ofaconceptual model

Abudget can
prescribe ordescribe the contributions

by parts of the solution

to the System quality under consideration

Modeling and Analysis: Budgeting version: 1.0 —
68 Gerrit Muller MAEUbudget ESI

Why Budgets?

* to make the design explicit

* to provide a baseline to take decisions

* to specify the requirements for the detailed designs

 to have guidance during integration

* to provide a baseline for verification

* to manage the design margins explicitly

Modeling and Analysis: Budgeting

69

Gerrit Muller

uly 3,
MMMMMMMMM

Visualization of Budget Based Design Flow

can be more complex
than additions

SRS

thoot 0.5s
tzap 0.2s

™

t roc e
p feedback | ‘
AR
1:over = 5 Z L
taisp measurements
new (proto)
tover
system
model 30 i
micro benchmarks
i V4aa Laisp S aggregated functions
applications
Q\O fover_| 20 profiles
D I'I’I" Taisp 25 traces
-f <>
< . Ttotal 55
design
measurements estimates; budget
existing system simulations
micro benchmarks
aggregated functions
applications
Modeling and Analysis: Budgeting version: 1.0
70 Gerrit Muller Ednsidger ES I

Stepwise Budget Based Design Flow

step example

1A measure old systems micro-benchmarks, aggregated functions, applications

1B model the performance starting with old systems flow model and analytical model

1C determine requirements for new system response time or throughput

2 make a design for the new system explore design space, estimate and simulate

models provide the structure
measurements and estimates provide initial numbers
specification provides bottom line

3 make a budget for the new system:

micro-benchmarks, aggregated functions, applications

4 measure protot nd new m :
P ypes and new syste profiles, traces

o lterate steps 1B to 4

Modeling and Analysis: Budgeting version: 1.0 —
71 Gerrit Muller TCRbudgets ESI

Budgets Applied on Waferstepper Overlay

off axis pos. off axis
meas. Sensor
accuracy —» repro
4nm e 3 nm
global stage Al. blue align
alignment pos. meas. sensor
—> ———
accuracy accuracy —» repro
6 nm 4 nm ™ 3 nm
reticle lens adsj)l,/lz?ranm , > interferometer
: en .
15 nm - matching STy - Stability
25 nm D (e 1 nm
process matched single stage position » frame
overlay — machine —+» machine —+ overlay —> accuracy » stability
80 nm 60 nm 30 nm 12 nm 7 nm 2.5 nm tracking
—» error WS
process
dependency matchlng stage grid alignment tracking 2 nm
- sensor - accuracy (> accuracy Ly repro Ly error X, Y —
5 nm S nm S nm S nm 2.5 nm tracking
Ly error RS
metrology tracking 1nm
Ly stability Ly error phi
5 nm 75 nrad
Modeling and Analysis: Budgeting Ver\ﬁil?g!é})ég

72

Gerrit Muller

ASMLoverlayBudget

SN EsI

Budgets Applied on Medical Workstation Memory Use

memory budget in Mbytes code obj data bulk data total

shared code 11.0 11.0
User Interface process 0.3 3.0 12.0 15.3
database server 0.3 3.2 3.0 6.5
print server 0.3 1.2 9.0 105
optical storage server 0.3 2.0 1.0 3.3
communication server 0.3 2.0 4.0 6.3
UNIX commands 0.3 0.2 0 0.5
compute server 0.3 0.5 6.0 6.8
system monitor 0.3 0.5 0 0.8
application SW total 13.4 12.6 35.0 61.0
UNIX Solaris 2.x 10.0
file cache 3.0
total 74.0

Modeling and Analysis: Budgeting version: 1.0 —
73 Gerrit Muller RVmemoryBudgetTable ES I

Power Budget Visualization for Document Handler
. finisher
scanner procede
and feeder paper path
legend
power paper input '
Ul and supplies module plhySICtaI
ayou
control cooling y
. Size
) B o .
% S j proportional
§2)
& = procedé = o power
29 . Lo
e ‘g’ paper path 223
D O : © < O
power supplies cooling Q= g

Modeling and Analysis: Budgeting

74 Gerrit Muller

version: 1.0
July 3, 2023
MDMpowerProportions

SN EsI

Alternative Power Visualization

| electrical |
power

J L J 1L
7 4 4 4 6‘:)j 4} ez

paper input
module

power supplies Ul and control

N\ N/ N\ i NS

cooling paper path finisher &D paper
JL JL JL N\ N i} AV

W

Modeling and Analysis: Budgeting version: 1.0 —
75 Gerrit Muller MDMpowerATows ESI

Evolution of Budget over Time

fact finding through details
aggregate to end-to-end performance
search for appropriate abstraction level(s)

from coarse guesstimate
to reliable prediction

from typical case
to boundaries of requirement space

from static understanding
to dynamic understanding

from steady state
to initialization, state change and shut down

from old system
to prototype
to actual implementation

time >

start later only if needed

Modeling and Analysis: Budgeting version: 1.0 —
76 Gerrit Muller MABUingre’ments ESI

Potential Applications of Budget based design

* resource use (CPU, memory, disk, bus, network)

e timing (response, latency, start up, shutdown)

* productivity (throughput, reliability)

* Image Quality parameters (contrast, SNR, deformation, overlay, DOF)

* cost, space, time

Modeling and Analysis: Budgeting version: 1.0 —
77 Gerrit Muller MDMbudgetApplications ES I

What kind of budget is required?

static dynamic
typical case worst case
global detailed
approximate accurate

IS the budget based on
wish, empirical data, extrapolation,
educated guess, or expectation?

Modeling and Analysis: Budgeting version: 1.0 —
78 Gerrit Muller MDMbudgetTypes ESI

Summary of Budgeting

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution
to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and
measurements

Budgets are based on models and estimations
Budget visualization is critical for communication
Budgeting requires an incremental process

Many types of budgets can be made; start simple!

Modeling and Analysis: Budgeting version: 1.0 —
79 Gerrit Muller MABUsummry ESI

Colophon

The Boderc project contributed to Budget Based
Design. Especially the work of

Hennie Freriks, Peter van den Bosch (Océ),

Heico Sandee and Maurice Heemels (TU/e, ESI)

has been valuable.

Modeling and Analysis: Budgeting version: 1.0 E—
80 Gerrit Muller MABUcolofon ESI

Modeling and Analysis; Modeling Paradigms

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The word modeling is used for a wide variety of modeling approaches. These
approaches differ in purpose, level of detail, effort, stakeholders, degree of
formaility, and tool support.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project JUl 3 2023 aaaaaa

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an y ’

open creation process. This document is published as intermediate or nearly mature version status: p|anned

to get feedback. Further distribution is allowed as long as the document remains complete (o checkrgy | ertesten

and unchanged. version: 0

Human Thinking and Tools

>

H

o
©

enterprise context

H
-
o

enterprise

 —
-
w

stakeholders

human tools to manage
overview large amounts
of iInformation

number of
details
H
(@)
o

4
s,
‘9 s
s 9 AN
s 4 \
4 b g y
4 b 0 S
2 b & \
4 b g y
4 N S
2 N \
4 £ y
4 '\ N
2 \
2 y
’ 0y
2 \
’ y
. s,
Y)
’ y
’ s,
Y)
’ y
. s
2 0y
s
0y
y

6 multi-disciplinary 'Y
1 O design :

parts, connections,

\j 10 lines of code

R
Doors

Core

Modeling and Analysis; Modeling Paradigms version: 0 pa—
82 Gerrit Muller KDAWStoolsDiabolo ESI

Formality Levels in Pyramids

100 |
1 O
10 Cw
q) —
10° & &8
3 :ES S heterogeneous system
10 c - uncertainties, unknowns
10* ’ slessformal, yariable backgrounds, concerns
/ communication-*,
5 . ‘_
/ oriented .
10 R S multi-
10° ; Y SysML disciplinary
, / % DOORS
10 P Asusraey R W | D] =1 (0
; - mono-
10° / tepestable. MM disciplinary
/ readable
10° / reusable
generated/
more formal, more rigorous instantiated

Modeling and Analysis; Modeling Paradigms

version: 0
July 3, 2023

83 Gerrit Muller TBSApyramidFormality

SN EsI

Modeling Paradigms

paradigm purpose
Conceptual system modeling architecting understanding, evaluating, creating
reasoning, communicating, decision making
SysML formal capture of structure and behavior
integrating other tools
simulating
Design for 6 sigma quality improvement in repeatable environments

black box oriented

Conceptual information modeling | understanding and formalizing information

Design Framework capturing and tracing architecture decisions

Matlab modeling and analyzing designs and algorithms
simulation and code generation

CAD mechanical and electrical design

interoperates with dedicated analysis,
e.g. thermal, structural

Formal specification and design verification

(model checkers)

Modeling and Analysis; Modeling Paradigms version: 0 —
84 Gerrit Muller MAMPparacigms ESI

Modeling and Analysis: Applications and Variations

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Models are used for a wide variation of purposes. Stakeholders can get confused
between “reality” and the virtual counterparts. In practice, many hybrids between
“real” and virtual systems exist. For example, planning and training systems using
real algorithms and data, and physical systems using a world model for situation
awareness.

Distribution

July 3, 2023
This article or presentation is written as part of the Gaudi project. The Gaudi project . Fand
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0.1

Model Applications and Variations

> sales > Systems of Systems
acquisition
apply all
capability analysis asynchronously
— evolvability
development Ve”.f |ca_t|on operation Il ph
P validation P all phases repeat
understanding test data mission planning with same needs
exploration comparison training
optimization trouble shooting health monitoring
In system
situation awareness
planning
training
health monitoring

Modeling and Analysis: Applications and Variations version: 0.1 p—
86 Gerrit Muller MAVCmodel\}/ari’ations ES I

Spectrum from Real to Virtual Systems

p

stakeholders
‘ mutually interacting

“real” world

environment

virtual world

stakeholders

agentts

I mutually interacting

virtual world; HIL

stakeholders

agentts

I mutually interacting

virtual world; SIL

stakeholders

agentts

I mutually interacting

system

system-
of-interest

system

A

subsystem

system Syl system system Syl system system Syl system
Y of-interest Y 4 of-interest Y Y of-interest 4
A A A
subsystem subsystem subsystem
| consisting of | consisting of | consisting of
hardware software hardware software hardware software
component component component component component component
“ ” . o H H H
real” world; testing Slm;Iatlon in context
stakehoI::iers stakeholders

I

mutually interacting

I mutually interacting

ConSiSting of system S’Iﬁggs‘if system system ;ﬁizgt system
| 1 A A
subsystem subsystem

hardware software Soraising of [consisting of
component component A_‘—A

hardware software hardware software

component component component component

g/l7odelmg and Analysis: Applications and Variations version: 9.1

Gerrit Muller

MAPMuvirtuality

SN EsI

Architecting for Variations

variation dimensions properties
fidelity time-performance
product/system accuracy
performance build & update effort
functionality impact build & update time
application testing effort and time
model purpose credibility
exhaustiveness applicability
usability
Q2
©
— 3
_ system architecture| model architecture
feed modularity modularity
variation design variation design

Modeling and Analysis: Applications and Variations version: 0.1
: uly 3, 2023
88 Gerrit Muller MAVCvariationDimensions ES I

Modeling and Analysis: Model Analysis

by Gerrit Muller TNO-ESI, USN-NISE
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Models only get value when they are actively used. We will focus in this presen-
tation on analysis aspects: accuracy, credibility, sensitivity, efficiency, robustness,
reliability and scalability.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project J | 3 2023
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an u y ’

open creation process. This document is published as intermediate or nearly mature version status: p|anned

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 1.0

What Comes out of a Model

accuracy model
credibility i -
use cases working range appllcab”lty
worst case
exceptions
. varying inputs working range
de5|gn varying circumstances worst case behavior
understanding exceptional behavior
exploration design
optimization | |varying design options | model(s) quality
verification varying realizations sensitivity
robustness
efficiency
change cases
: ification changes
life cycle [SPEEE
y and ripple through performance e L
reliability specification
scalability feasibility
other system qualities

Modeling and Analysis: Model Analysis version: 1.0 p—
90 Gerrit Muller MAANaspects ESI

Applicability of the Model

+&1
-E2

iInput
accuracy
credibility

measurements
Q
=3
<l
assumptions §
=
-
facts 3
abstraction
credibility

working range

model(s)

accuracy
credibility
working range

abstraction

usage context
specifications
designs
realizations

model realization
credibility
propagation

Modeling and Analysis: Model Analysis

91 Gerrit Muller

version: 1.0
July 3, 2023
MAANmodelApplicability

SN EsI

How to Determine Applicability

try out models
be aware of accuracy, credibility and working range

simple and small models
1. Estimate accuracy of results

based on most significant inaccuracies of inputs
and assumed model propagation behavior

2. |ldentify top 3 credibility risks

iIdentify biggest uncertainties in
inputs, abstractions and realization

3. Identify relevant working range risks

identify required (critical) working ranges and
compare with model working range

substantial models

systematic analysis and documentation of accuracy,
credibility and working range

Modeling and Analysis: Model Analysis version: 1.0
: y 3, 2023
92 Gerrit Muller MAANapplicabilityHowTo ESI

Common Pitfalls

discrete events in continuous world

discretization artefacts
e.g. stepwise simulations

(too) systematic input data
random data show different behavior
e.g. memory fragmentation

fragile model
small model change results in large shift in results

self fulfilling prophecy
price erosions + cost increase (inflation) -> bankruptcy

Modeling and Analysis: Model Analysis version: 1.0 —
93 Gerrit Muller MAANpittalls ESI

Worst Case Questions

Which design assumptions have a big impact on system performance?

What are the worst cases for these assumptions?

How does the system behave in the worst case?

a. poor performance within spec

b. poor performance not within spec

c. failure -> reliability issue

Modeling and Analysis: Model Analysis version: 1.0
. uly 3, 2023
94 Gerrit Muller MAANworstCaseQuestions ES I

FMEA-like Analysis Techniques

safety
hazard analysis

reliability
FMEA

security

/

(systematic)

-

~

brainstorm

/

maintainability

performance

potential hazards

failure modes
exceptional cases

vulnerability risks

change cases

worst cases

"analysis and

assessment

probability
severity

_propagation)

C N
Improve
spec, design,
process,
procedure, ...

damage

effects

consequences

Impact, effort, time

system behavior

N /

measures

measures

measures
decisions

decisions

Modeling and Analysis: Model Analysis

95

Gerrit Muller

version: 1.0
July 3, 2023
MAANfmeaLikeAnalysis

SN EsI

Brainstorming Phases

wave 1: the obvious

wave 2: more of the same

wave 3: the exotic, but potentially important

don't stop too early with brainstorming!

Modeling and Analysis: Model Analysis

96

Gerrit Muller

version:

1
July 3, 202

it

MAANDbrainstorm

SN EsI

Different Viewpoints for Analysis

/ usage context \ (

N

system

new product

e.g. WoW extension
merger
automated access

new functions
new interfaces
new media
new standards

cache/memory trashing
garbage collection
critical sections

local peak loads
intermittent HW failure

N

power failure

network failure

new SW release

roll back to old SW release

. life cycle context

Modeling and Analysis: Model Analysis

97

Gerrit Muller

version: 1.0
July 3, 2023
MAANviewpoints

SN EsI

Modeling and Analysis: Reasoning Approach

by Gerrit Muller TNO-ESI, HSN-NISE
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

We make models to facilitate decision making. These decisions range from
business decisions, such as Service Level Agreements, to requirements, and to
detailed design decisions. The space of decisions is huge and heterogeneous.
The proposed modeling approach is to use multiple small and simple models. In
this paper we discuss how to reason by means of multiple models.

eeeeeeeeee
es rrrrr s@ sssssssssss Exwew@
XA '@*EAA‘@
8RO, 11 A g oA
Distributi o 8,
istribution AT A aE
July 3, 2023 & Oy {8 BB
This article or presentation is written as part of the Gaudi project. The Gaudi project . (I ~5 7
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary @AEI‘@A'(EI‘
open creation process. This document is published as intermediate or nearly mature version draft AEI QE@A' 7
to get feedback. Further distribution is allowed as long as the document remains complete lfe cycle conte

and unchanged. version: 1.0

aaaaaa

eeeeee

‘‘‘‘‘‘‘‘‘‘‘‘‘

Purpose of Modeling

How to use multiple models to facilitate decisions?
How to get from many fragments to integral insight?
How many models do we need?

At what quality and complexity levels ?

: specifica@
facts from investigk modeling
decision _
measurements results : verification
making
assumptions : _
/ analysis deCISIOI’][S>
o risk
uncertainties accuracy customer satisfaction
unknowns - e g \\/Orking range ==
. _g_ J time, cost, effort
errors credibility

profit margin

Modeling and Analysis: Reasoning Approach version: 1.0 p—
99 Gerrit Muller MAREpLjrpose ESI

Graph of Decisions and Models

/__usage context /

enterprise&users

AW

AN

\

black box view

\ life cycle context

-
@) legend
A i /A A assumption
QA input e.g.
m 9, 0 W measurement
A g A @ decision

Modeling and Analysis: Reasoning Approach
Gerrit Muller

100

version: 1.0
July 3, 2023
MAREgraph

SN EsI

Example Graph for Web Shop

/

usage context

D [

system

enterprise&users

customer

customer
behavior

interest
arke
m

\

black box view

load
response
time

design

transaction
transactions CPU

transaction
peed

CPU memory
budget budget
/me\ throughput elapseq | \ CPU load
orsort time m
> budget network _
information load picture
work oa cache
ﬂOW storage access time
capacity
\\ resource /
SLA dimensionsing
legend
A assumption
maintenance @ oI ERe ¢
offort measuremen
changes @ decision

_ life cycle context

Modeling and Analysis: Reasoning Approach
101 Gerrit Muller

version: 1.0
July 3, 2023

MAREgraphWebShop

Relations: Decisions, Models, Inputs and Assumptions

@\ fac
I//tates
Zfﬁ—faulltates—» d |
fa (:\\\'tate \Z‘/’i
(\C
L

Q}C)
<& /A
@\ legend
Cq/; .

/ oe®
Brage W\ A assumption
d feeds (i) inpute.g.
feeds

measurement
A/ o9 decision
G
oel ©

Modeling and Analysis: Reasoning Approach version: 1.0
102 Gerrit Muller

|
July 3, 2023
MARErelations

Reasoning Approach

1. Explore usage context, life cycle context and system
* top-down bottom-up *

t2. Determine main Threads-
of-Reasoning

b2a. "Play" with models

t3. Make main Threads-of- N\ |b2b. Investigate facts
Reasoning SMART learn

_ _ b2c. Identify assumptions
t4. Identify "hottest" issues

t5. Model hottest, b3. Mgd_el significant,
non-obvious, issues NON-0DVIOUS, ISSUEs

¥ Y

6. Capture overview, results and decisions

7. Iterate and validate

all steps time-boxed between 1 hour and a few days
early in later in
project project

Modeling and Analysis: Reasoning Approach version: 1.0 —
103 Gerrit Muller MAREmathod ES I

Frequency of Assumptions, Decisions and Modeling

10° 10° 10° 10°
| N S
implicit d
(trivial?) A\
.. |d
explicit |
A\ A
legend
@ A assumption
try'OUtS@ (i) inpute.g.
very simple @ measurement
small d| decision
key [o @ model

substantial (m)

Modeling and Analysis: Reasoning Approach
104 Gerrit Muller

. [
version: 1.0
July 3, 2023
MAREfrequency

Life Cycle of Models

understanding exploration optimization verification
? most try out models never
leave the desk or computer
try out of the architect!
models A abandoned '

many small and simple models
are used only once;

some are re-used in next projects
archived archived

not maintained not maintained
simple and small >@
models archived X re-used in re-used in N re-usedin
re-use . . next project next project next project
not maintained ext projec ext projec ext projec
substantial models - m
re-used in re-used in re-used in

next project : :
re-use Pro] next project next project

substantial models capture core domain know how;
they evolve often from project to project.
creation and evolution of intellectual property assets

Modeling and Analysis: Reasoning Approach version: 1.0 p—
105 Gerrit Muller MAREmodelLifeCycle ES I

Examples of Life Cycle of Models

understanding exploration optimization verification
try out load/cost
models
function
mix | — load/cost
peak impact
\ load/stress
_) test suite
simple and small customer \ integral
models global load
distribution model
webshop
obal benchmark
- Olreloke: suite
subsltle:a)ntlal nt10dels customer e p—
(IP assets) demographics performance

Modeling and Analysis: Reasoning Approach version: 1.0
. y 3, 2023
106 Gerrit Muller MAREmodelLifeCycleExample ES I

Architecting System Performance; Defining Performance

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Performance is a broad term. Each domain has its own key performance param-
eters. Performance can be used to indicate time-oriented performance, such as
response time, throughput, or productivity. However, more broadly, it may be
used for aspects like image quality, spatial performance (f.i. positioning accuracy),
energy or power properties, sensitivity and specificity of algorithms, or reliability
and availability.

Distribution

July 3, 2023
This article or presentation is written as part of the Gaudi project. The Gaudi project . Fand
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft
to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0.1

Performance Attributes

heat release
cooling capacity

time-oriented spatial reliability
response time positioning accuracy MTBF
latency working envelope MTTR
throughput range uptime
productivity turning cycle unscheduled breaks
energy/power algorithmic Image quality
energy consumption sensitivity sharpness
range specificity contrast
standby time accuracy color consistency
maximum power coverage color rendition

streakiness
uniformity

Architecting System Performance; Defining Performance

108 Gerrit Muller

version: 0.1

]
July 3, 2023
ASPDPperformanceAttributes

Defining Performance

performance is a function of:
context
perception depends on individual human characteristics
circumstances scenario
operation of interest | Y€ case’

system of interest

specification _ _
_ } generic, valid for the class of systems
design normal and special cases

configuration (worst case, degraded, exceptions, ...)

version > instance specific

history i

'ause case in this context is rich (includes quantifications) and
broad (covers the operation of interest, not a single function)

Architecting System Performance; Defining Performance version: 0:1
109 Gerrit Muller ASPDPdefiningPerformance ES I

Example EV Range Definition

Electric Vehicle New European Drive Cycle
Driving Range 120
Range = f(100 j
v(t),
Circumstances, 80
Driving style, =]
Car load, > []
. ® 60
Charging state, g |
7))

Battery age) 20 I f I N

A guantified Use Case 20 H/H H/H H/H H/H/

e et | LI

achieve the specified 0 200 400 600 800 1000 1200
range. Time, s

http://en.wikipedia.org/wiki/New_European_Driving_Cycle#/media/File:New_European_Driving_Cycle.svg
Published under GFDL, thanks to Orzetto

Architecting System Performance; Defining Performance VerJSuilggrzgég
110 Gerrit Muller SAFMdriveCycleExample ES I

End-to-End Performance

The end-to-end performance is the relevant performance as the
stakeholder experiences it: from initial trigger to final result.

end-to-end time

- |
B nett elevator time _ arrive at
press destination
button nett moving floor
_ time
l walk in - > walk out
thuman teIevator televator thuman
1:wait tmove
activities in | handling 1 handling 2 | activities out

1:end-to-end - thuman activities T 1:Wait + 1:elevator handling + tmove

Architecting System Performance; Defining Performance
111 Gerrit Muller

version: 0.1
July 3, 2023

MAPMendToEnd

SN EsI

Architecting System Performance; Measuring

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Measuring is an essential part of architecting performance. Measurements
provide quantified insight in actual behavior and performance. In this presen-
tation, we discuss measuring, benchmarking, and instrumentation.

Distribution
Thi icl ion i i f the Gaudi j The Gaudi j JU|y 3, 2023

is article or presentation is written as part of the Gaudi project. e Gaudi project . Pt
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary
open creation process. This document is published as intermediate or nearly mature version draft

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

Performance Attributes in the Benchmark Stack

: end-to-end
typical values :
. function
interference
variation .
boundaries durattion
services
network transfer interrupts
task switches

database access OS services

database query CPU time

services/functions footprint

interrupt _ < 5 selie Eppiealons locality
task switch | duration interrupts density
CPlrJ] OS services]%Etl:);'rr:e task switches efficiency
cache OS services services| |overhead
memory J L cache
bus duration
: footprint :
L operating system

latency
bandwidth
efficiency (computing) hardware tools

Architecting System Performance; Measuring

113

Gerrit Muller

version: 0
July 3, 2023

EBMIbenchmarkStack

SN EsI

Performance as Function of the Layers

Architecting System Performance; Measuring

114

system performance = f(applications N I
25
- n
A. services : S5 &
SR RURNS
- 8 operating system : 4(-6 P
E o c 8
S w hardware =
o d ’
c O
© tools)
version: 0

Gerrit Muller

July 3, 2023
EBMlIperformance Formula

SN EsI

Example yuBenchmarks for Software

database
network,
/O

high level
construction

low level
construction

basic
programming

oS

HW

Infrequent operations,
often time-intensive

start session
finish session

open connection
close connection

component creation
component destruction

object creation
object destruction

memory allocation
memory free

task, thread creation

power up, power down
boot

often repeated
operations

perform transaction
query

transfer data

method invocation
Same Scope
other context

method invocation

function call
loop overhead

basic operations (add, mul, load, store)

task switch
interrupt response

cache flush
low level data transfer

Architecting System Performance; Measuring

115 Gerrit Muller

version: 0
July 3, 2023
RVuTimingBenchmarks

SN EsI

Measurement Errors and Accuracy

noise resolution
system measured measurement — Value +£1
under study signal instrument _£2
/ r / measurement
offset calibration error
characteristics
A
measurements have
. . .)
stochastic variations and = 1+E1
. . . >
systematic deviations I &2
resulting ina range
rather than a Single value >~
time

Architecting System Performance; Measuring

116 Gerrit Muller

. |
version: 0
July 3, 2023
MAMEmeasurementError

Be Aware of Error Propagation

1:duration - tend - tstart systematic errors: add linear

1:start — 10 +/ - 2 HS stochastic errors: add quadratic

teng =14 +/- 2 LS

4 +/[- ? S

tduration

Architecting System Performance; Measuring version: 0 e —
4 uly 3, 2023
117 Gerrit Muller MAMEerrorPropagation ES I

Intermezzo Modeling Accuracy

Measurements have
stochastic variations and systematic deviations

resulting in a range rather than a Single value.

The INpUts of modeling,
"facts"”, assumptions, and measurement results,

also have Stochastic variations and systematic deviations.

Stochastic variations and systematic deviations
propagate add, amplify or cancel) through the model

resulting in an OUtput range.

Architecting System Performance; Measuring version: 0 p—
118 Gerrit Muller MAMEintermezzo ES I

Tools and Instruments in the Benchmark Stack

create steady state

typical small testprogram

ts = timestamp() test suite
for(i=0;i<1M;i++) do something @
fe = tlmes_tamp() instrumentation — _ _ :
duration =t - te small test programs applications | | visual inspection
small test programs
c
task manager 2 @
perfmon } oS g £
ps, vmstat : o E
processing S
small test programs : 17 oIT
J L heapviewer services =
small test programs
HW support parametrized _
- = processing operating system
(computing) hardware tools

Architecting System Performance; Measuring version: 0
d uly 3, 2023
119 Gerrit Muller EBMIbenchmarkPositions ES I

Architecting System Performance; Resource Management

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The management of the resources largely determines system performance. This
document discusses concepts related to resource management, such as caching,

concurrency, and scheduling.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023
status:

draft
version: 0.1

preliminary

‘‘‘‘‘‘‘

wansport

Generic Resource Model

virtual physical
present output
process or
process
compute
communicate transport
store store
[m;?:rlia} fetch ptransport® process s transport» process »transport» deliver -»[productj
acquire input store store store
Architecting System Performance; Resource Management version: 0:1

121

Gerrit Muller

ASPRMgenericResources

SN EsI

Design Considerations for Resource Management

Performance depends on resource utilization and management.

The design of the logistics, how does EMI* flow through the resources,
IS critical.

Critical design aspects are:
e concurrency (parallelism, pipelining)
e granularity of EMI

e scheduling (allocation of resources)

'Energy Material Information

Architecting System Performance; Resource Management vegziltyngrzooég —
192 Gerrit Muller ASPRMdesign ES I

Granularity as Key Design Choice

unit of unit of unit of
. or L or .
buffering - synchronization .~ Processing

P KR KR RK R

o pixel
fine grain: coarse grain:
flexible rigid
high overhead low overhead

unit of
/O

Architecting System Performance; Resource Management version: 0.1 BN' E SI

123 Gerrit Muller EACgranularity

Size versus Performance Trade off

small capacity
fast technology

—>

o &

small £ 2
. w O
expensive 3
S w

QO

I c C

large capacity £ G
slow technology = %
large BT €
S QO

low cost S Q

staircase effect:
performance and
Size are non-linear
with thresholds

main hard disk robotized
media

L1 L3
cache cache memory disk farm

1O|12 1O|15

103 10° 10°
data set size
in bytes

example data storage technology

Architecting System Performance; Resource Management
124 Gerrit Muller

version: 0.1
July 3, 2023

ASPRMsizeVsPerformance

SN EsI

Pipeline pattern

production line = pipeline

S =S S P == e i ==

car n+3 car n+2 car n+1

lean uses the notion of tact

car n

throughput = products/time

f.I. every 10 minutes the products toroduction 1 car = tin = Tout

move to the next workspot

Architecting System Performance; Resource Management version: 0.1

125

d July 3, 2023
Gerrit Muller ASPRMproductionPipeline

SN ESi

Y-chart Pattern

structure and design of
topology of dynamic
resources behavior

feedback mapping

feedback

system
performance

Architecting System Performance; Resource Management version: 0.1
126 Gerrit Muller ASPRMyChart ES I

Performance Pitfalls and Resource Management

Overhead (control, handling)
Starvation (underrun)
Saturation/stagnation (overrun)
Variation (duration, quality)
Serialization

Interference with other work

Unnecessary conversions or adaptations

Architecting System Performance; Resource Management veszui|<y3g:2C(>)é13 —
127 Gerrit Muller ASPRMpitfalls ES I

Architecting System Performance; Greedy and Lazy

Patterns

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Greedy and lazy are two opposite patterns in performance design. An extreme
application of both patterns is start-up, where greedy starts as much as possible,

and lazy as little as possible.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023 logo
status: preliminary TBD
draft

version: 0.1

Greedy and Lazy Patterns

lazy

(on demand, pull)

greedy

(push, forecast)

what do nothing until someone needs it prepare time consuming operations,
when resources are idle
benefits no resource usage unless needed results are available immediately

disadvantages

time to result depends on execution

time

some resource use is wasted

when

default

to achieve required performance
(explore other concepts too!)

this pattern applies to all domains (IT, goods flow, energy)

Architecting System Performance; Greedy and Lazy Patterns

129

Gerrit Muller

. [
version: 0.1
July 3, 2023
ASPGLpatterns

Start up of Systems as Example

- inial |

Start system

[running j

start operation

[operating j

How much time does it take
to start a laptop with Windows?

How much time does it take
to start an application (e.g. Word)?

Architecting System Performance; Greedy and Lazy Patterns veg%}ggrzgég
130 Gerrit Muller ASPGLstartup ES I

Example from Cloud Applications

screen screen screen legend
client client client
presentation
< network)
computation
web =
server CH
—
communication
< network >
base
server

Architecting System Performance; Greedy and Lazy Patterns vegsuilty)grzoo-zg
131 Gerrit Muller MAFTgenericBlockDiagram ES I

Caching Pattern (Physical Grab Stock)

performance issues

long latency (mass) storage
long latency communication
overhead communication

resource intensive processing

solution patterns

frequently used subset
In fast local storage

low latency
less communication
large chunks (less overhead)

processing once (keep results)

design parameters

caching algorithm
storage location
cache size

chunk size

format

Architecting System Performance; Greedy and Lazy Patterns

132 Gerrit Muller

version: 0.1
July 3, 2023

ASPGLwhyCaching

SN EsI

Many Layers of Caching

5 e | screen | | screen screen
cache =
. cache hit - file cache I I I
penalty | Peomenee | e Y | client client client
; ; L1, 12,13 | | !
application cache 1s| 10ms < ’
networ >
network layer cache | 100 ms 1 ms | |
application cache :
flle CaChe 10 ms 10 uS network layer cache mid
: file cache office
virtual memory 1 ms| 100 ns vinial mermory 1 server
memory caches
memory caches L1, 12,13 I I
N
Ll, L2, L3 100 nS 1 ns netWOFk { application cache
I I network layer cache
i back . file cache
typical cache 2 orders office ——
of magnitude faster server | | [.
Architecting System Performance; Greedy and Lazy Patterns version: 0.1 o
133 Gerrit Muller MAFTgenericCaches ESI

Disadvantages of Caching Pattern

robustness for application changes
ability to benefit from technology improvements
robustness for changing context (e.g. scalability)
robustness for concurrent applications
fallure modes in exceptional user space

These patterns increase complexity and coupling.

Use only when necessary for performance.

Architecting System Performance; Greedy and Lazy Patterns version: 0.1
134 Gerrit Muller ASPGLcachingRisks ES I

Architecting System Performance; Scheduling

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Scheduling plays a crucial role in resource allocation to get desired system perfor-
mance. This document discusses local and global scheduling.

assumptions Rate RMA theory:
Monotonic Analysis (RMA): | schedule is possible when:
periodic tasks with Load = ¥, U, < n(2/"-1)
period T; forn=1,2,3
process time P; max utilization is:

load U; = P/T; 1.00, 0.83, 0.78, ... log(2)

Distribution |

JUIy 3, 2023 tasks are |ndernendem . _= 0,69
This article or presentation is written as part of the Gaudi project. The Gaudi project . . Rate Monoloi Scheding (RMS) use e prionies
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary :I“:;gt::‘”y‘ejl‘:‘”‘;j‘e”’:;:esses feetibeiteadings
open creation process. This document is published as intermediate or nearly mature version draft P

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

Single Resource Scheduling

Scheduling of time critical operations on a single
resource:
e Earliest Deadline First

optimal

complex to realize

e Rate Monotonic Scheduling
no full utilization

simple to realize

Architecting System Performance; Scheduling version: 0
136 Gerrit Muller ASPSCintro ES I

Earliest Deadline First

* Determine deadlines in Absolute time (CPU cycles or msec, etc.)

 Assign priorities Process that has the earliest deadline
gets the highest priority
(no need to look at other processes)

» Constraints Smart mechanism needed
for Real-Time determination of deadlines
Pre-emptive scheduling needed

EDF = Earliest Deadline First

Earliest Deadline based scheduling
for (a-)periodic Processing

The theoretical limit for any number of processes
IS 100% and so the system is schedulable.

Architecting System Performance; Scheduling version: 0 e —
137 Gerrit Muller PHRTedfPriorityAssignment ES I

Exercise Earliest Deadline First (EDF)

Calculate loads and determine thread activity (EDF)

Thread Period = deadline | Processing Load
Thread 1 9 3 33.3%
Thread 2 15 5
Thread 3 23 5

Suppose at t=0, all threads are ready to process the arrived trigger.

0) 15 18 23
Thread 1

Thread 2

Thread 3

Source: Ton Kostelijk - EXARCH course

Architecting System Performance; Scheduling version: 0 p—
138 Gerrit Muller PHRTexerciseEDF ES I

Rate Monotonic Scheduling

« Determine deadlines (period) interms of Frequency or Period (1/F)

 Assign priorities Highest frequency (shortest period)
==> Highest priority

 Constraints Independent activities
Periodic

Constant CPU cycle consumption

Assumes Pre-emptive scheduling

RMS = Rate Monotonic Scheduling

Priority based scheduling for Periodic Processing
of tasks with a guaranteed CPU - load

Architecting System Performance; Scheduling version: 0 e —
139 Gerrit Muller PHRTrmsPriorityAssignment ES I

Exercise Rate Monotonic Scheduling (RMS)

Calculate loads and determine thread activity (RMS)

Thread Period = deadline | Processing Load
Thread 1 9 3 33.3%
Thread 2 15 5
Thread 3 23 5

Suppose at t=0, all threads are ready to process the arrived trigger.

0 9 15 18 23
Thread 1

Thread 2

Thread 3

Source: Ton Kostelijk - EXARCH course

Architecting System Performance; Scheduling version: 9
140 Gerrit Muller PHRTexerciseRMS ES I

RMS-RMA Theory

assumptions Rate RMA theory:
Monotonic Analysis (RMA): | schedule is possible when:
periodic tasks with Load = ¥, U; < n(2*"-1)
period T forn=1, 2, 3,

process time P; max utilization is:

load U; = P/T, 1.00, 0.83, 0.78, ... log(2)
tasks are independent ~= 0,69

Rate Monotonic Scheduling (RMS) uses fixed priorities

RMS guarantees that all processes meet their deadlines

Fixed priority -> low overhead

Source: Ton Kostelijk - EXARCH course

ASPRMrms

Architecting System Performance; Scheduling version:
141 Gerrit Muller ’ ESI

Answer EDF Exercise

Answers: loads and thread activity (EDF)
Thread Period = deadline Processing Load
Thread 1 9 3 33.3%
Thread 2 15 5 33.3%
Thread 3 23 5 21.7%

88.3%
0 9 15 18 23

Thread 1 % %
Thread 2 % %

Thread 3 92;

Source: Ton Kostelijk - EXARCH course

Architecting System Performance; Scheduling version: 0 p—
142 Gerrit Muller PHRTexerciseEDFanswer ES I

Answer RMS Exercise

Answers: loads and thread activity (RMS)

Thread Period = deadline Processing Load
Thread 1 9 3 33.3%
Thread 2 15 5 33.3%
Thread 3 23 5 21.7%
88.3%
0 9
3 3
Thread 1 %
Thread 2 S
Thread 3 1 3

Source: Ton Kostelijk - EXARCH course

Architecting System Performance; Scheduling version: 0
143 Gerrit Muller PHRTexerciseRMSanswer ES I

From Simple-Local to Complex-Global

A perspective on dynamic behavior is to view the system
as set of periodic behaviors.

Periodic behavior Is easier to model and analyze, e.qg.
using RMS and RMA.

Modern systems and Systems of Systems consists of
complex networks of concurrent resources.

Typically, a combination of more advanced global
scheduling is combined with simple local scheduling.

Architecting System Performance; Scheduling version: 0 e —
144 Gerrit Muller ASPSCglobal ES I

Architecting System Performance; Robust Performance

by Gerrit Muller ~ TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

Performance should be robust. The performance should be reproducable and it

should be well-behaving in extreme conditions.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

July 3, 2023

status: preliminary
draft

version: 0.2

eeeeeeeeeee

Variations are Suspect

Poorly understood variations require analysis

performance measurements
- in standardized conditions

——1# of cases—»

. what causes
these outlyers?

-
- >
what causes

this variation?

performance
smaller is better

Architecting System Performance; Robust Performance vegsuilggrzg-zg
146 Gerrit Muller ASPRPvariation ES I

Coping with Disturbances

f How does the system respond to disturbances?
o 2 How quickly does it recover?
2 o
S o How far does performance degrade?
s&|
O ©
o & c
7 o = A
© O
S s
= S
© o
\ 4 o Y
A A
< —> < —> steady state
recovery time recovery time performance
disturbance disturbance

time >

Architecting System Performance; Robust Performance version: 9.2
147 Gerrit Muller ASPRPdisturbances ES I

Measure to Validate Working Range

working
range

tmax

desired
linear

« vvorkn1g behavior

range

load

A system design assumption is often:
the performance of this function
{ Is constant | is linear | doesn't exceed x | ...}

The working range is the interval where this
assumption holds

Architecting System Performance; Robust Performance version: 9:2
148 Gerrit Muller MAANworkingRange ES I

Validate Understanding of System Performance

use the system in varying conditions

Characterize the system measure performance
as function of the conditions

_ where does the design fail?
Stress testing (go beyond specified limits)

keep the system in heavy load condition
observe how it keeps performing

Load testing o
measure variations

. . age the system
(Accelerated) Lifetime testing observe how it keeps performing

Architecting System Performance; Robust Performance version: 0.2
149 Gerrit Muller ASPRPValidation ES I

Bloating, Waste, and Value

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

A threat to performance is the combination of feature creep and technical debt.
This combination causes bloating of the design. In Lean terms, the combination
causes waste. A crucial question is where is the value, and is the value in balance
with the potential degradation of performance.

Distribution | 0go
This article or presentation is written as part of the Gaudi project. The Gaudi project

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an JUly 3! 2023 TB D
open creation process. This document is published as intermediate or nearly mature version status: p|anned

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

From Feature Creep to Performance Problems

loss of knowledge

/ \
maturing of : Ir?lj:rrnel;iesrlr:)?c Lol : performance
systems ' features \ reussoaurge ' problems
(feature creep) g
bloating of /
design
: : lack of
time effort gain / design overview
by taking = technical debt 1 complexity insight
SN understanding
version: 0

Bloating, Waste, and Value

151 Gerrit Muller

July 3, 2023
BWVfeatureCreep

SN EsI

Technical Debt

Technical Debt is a metaphor used within the software
Industry to communicate the consequences of pragmatic
design decisions deviating from the intended design of a

system

from: http://gaudisite.nl/INCOSE2016_Callister Andersson SMARTtechnicalDebt.pdf
based on Cunningham http://c2.com/doc/oopsla92.html

Bloating, Waste, and Value Vﬁlrfisogézg —
152 Gerrit Muller BWVtechnicalDebt ES I

Value versus Performance Degradation

Are benefits (value) in balance with the costs (such as performance degradation)?

increase in
: performance
increasing number of features technical debt | resource problems
(feature creep) Lo ue
lack of
bloating of design overview
_ _ _ design complexity insight
time effort gain by taking understanding
shortcuts \ /

-

. . |
Bloating, Waste, and Value Vﬁlrflsogézg
153 Gerrit Muller BWVvalueEvaluation ES I

Exploring bloating: main causes

genericity
configurability

7p)

0]
— O
> > 3
= _ provisions for =
< - future =
_; = N =
L/ CED ks %
c = >
O N S O
= - O £
S % core T 5
5 Q function £ o
2 = o
" < O 9o
S = z I da

egen
9 support for £ 9
unused legacy N overhead
code
value

Bloating, Waste, and Value version: 0 —
154 Gerrit Muller EASRTbloating ES I

Necessary functionality > the intended regular function

testing
Instrumentation
regular_ diagnostics
functionality tracing
asserts

boundary behavior:

exceptional cases
error handling

Bloating, Waste, and Value Vﬂfiso%zg —
155 Gerrit Muller BLOATeoroP o ES [

The danger of being generic: bloating

lots of lots of lots of
config config config
_ over- over- over-
client rides rides rides
side
toolbox lots of if-then-else
side
lots of configuration
options A\ ’, //

lots of stubs in retrospect common

li
lots of best guess (duplicated) code

defaults

over-generic class

specific
Implementations
without a priori re-use

generic design from

scratch after refactoring

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

version: 0
July 3, 2023

Bloating, Waste, and Value
GDbloatingVisualized

156 Gerrit Muller

SN EsI

Shit propagation via copy paste

needed code

bad code

copy
paste

modify

needed code

code not
relevant for new
function

repair code

bad code

new needed
code

new bad
code

Bloating, Waste, and Value
157 Gerrit Muller

version: 0
July 3, 2023

BLOATshitPropagation

SN EsI

Example of shit propagation

Class Old:
capacity = startCapacity
values = int(capacity)
size=0

def insert(val):
valuesJsize]=val

Class New:
=1
values = int(capacity)
size=0

def insert(val):
values|[size]=val

Class DoubleNew:
[capacity = 1 |
values = int(capacity)
size =0

def insert(val):
values|size]=val

. copy . copy .
_S|z_e+:1 . paste S|ze+:.1 paste size+=1
if size>capacity: . capacity+=1 — capacity+=1
capacity*=2 relocate(values, relocate(values,
relocate(values, capacity) capacity)
capacity) def insertBlock(v,len):
for i=1 to len:
insert(v[i])
Bloating, Waste, and Value version: 0

158 Gerrit Muller

July 3, 2023

BLOATshitPropagationExample

SN EsI

Bloating causes more bloating

poor specification (“what")

poor design ("how")

genericity
configurability
provisions for
future

core
functionality

support for
unused legacy
code

dogmatic rules
for instance fine grain COM interfaces

poor
spec

poor
design

genericity configurability provisions for

decomposition overhead

support for unused legacy code

dogmatic
rules

poor specification (“what")
poor design ("how")

core
functionality

support for
unused legacy
code

dogmatic rules
for instance fine grain COM interfaces

poor specification (“what")

poor design ("how")

genericity
configurability
provisions for
future

core
functionality

support for
unused legacy
code

dogmatic rules
for instance fine grain COM interfaces

poor specification (“what")

poor design ("how")

genericity
configurability
provisions for
future

core
functionality

support for
unused legacy
code

dogmatic rules
for instance fine grain COM interfaces

legenda

overhead

value

Bloating, Waste, and Value
Gerrit Muller

159

version: 0
July 3, 2023

EASRTbloatingCausesBloating

SN EsI

Causes even more bloating...

Bloating causes performance \ |¢ | |"Emm |

and resource problems. v v
Solution: special measures:
memory pools, shortcuts, ...) C

genericity configurability provisions for

poor dogmatic
genericity genericity genericity
configurability 17 configurability 173 configurability 1)
= provisions for § = provisions for § = provisions for §
g — future E g ~ future E g ~ future E
2 H o E = z o E E 5 .
~ 2 Q g = 2 Q g <~ e O g
S) 20 5 = 20 5 = 20
5|5 o 8| 5 oo 5| 5 e
=i = @ =
£ @ core go 2 @ core go £ @ core go
o o functionality D& o o functionality D& o °© functionality D&
= S ° 8 = S - 8 7y I} - 8
2 <3 5 2 <3 5 2 <3 5
I} 3 5] b 5] %
I} £ Is) £ IS) £
= support for 5 = support for 5 = support for 5
unused legacy unused legacy unused legacy
code code code

genericity configurability provisions for
poor | poor | performance, resource | dogmatic

spec | design optimi zation rules
support for unused legacy code value

legenda

overhead

) . |
Bloating, Waste, and Value version: 0
\ y 3, 2023
160 Gerrit Muller EASRTbloatingCausesBloatingMore ES I

