From Synchronous to Asynchronous Design

by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The most simple real time programming paradigm is a synchronous loop. This is an effective approach for simple systems, but at a certain level of concurrent activities an asynchronous design, based on scheduling tasks, becomes more effective. We will use a conventional television as case to show real time design strategies, starting with a straightforward analog television based on a synchronous design and incrementally extending the television to become a full-fledged digital TV with many concurrent functions.

July 4, 2016 status: preliminary

draft

version: 0

Hard Real Time Design

Case Simple Analog TV

Simple Analog TV

Multiple views on system

Fundamentals of *periodic* or *streaming* Hard Real-Time applications

System performance characterisation: Performance model

Synchronous design concept

Functional Flow Simple Analog Television

SW Construction Diagram

Video Timing

Hidden lines (can contain data)

Scan line even

Scan line odd

Retrace even

Retrace odd

Vertical retrace

For PAL-625:

Line Frequency: 15.625 kHz

Scanning Lines: 625 Field Frequency: 50 Hz

Hidden lines (can contain data)

Audio-Video Synchronization Requirement

Sound and vision must be lip-sync or better Maximum latency ~ +/- 100 msec

Synchronous Control Software

Synchronous design

HW Diagram

Synchronous design questions

Estimate processing time on a 100 MHz ARM core
Assuming that all processing and acquisition is done in HW
Graphics rendering (user interface + teletext display) is done in SW

Where do you expect variation?

How feasible and how reliable is this design?

Low Priority Work in the Background

Design with multiple parallel tasks

Synchronous or Asynchronous?

Synchronous

=> Map on Highest frequency

Constraints:

- Processing frequency must be a whole (integer) multiple of the lower frequencies
- Each process must be completed within the period of the highest frequency, together with the high-frequency process

A-Synchronous

=> Concurrent processes

Multiple Periods in a Simple TV

Input signal	50 Hz
Processing	100 Hz
User Interface	20 Hz
Power and Housekeeping	0.5 Hz
Output	50, 100 Hz

Summary Case Simple Analog TV

Simple Analog TV

Performance model requires:

identification of processing steps

their relation

critical parameters and values

Synchronous design sufficient for periodic applications with one dominant frequency

Multiple views on system:

HW diagram

SW construction diagram

Functional flow

Time-line

PHRTatvŠummary

Case Digital Television

From Analog TV to Digital TV

Adding more input formats and output devices

Multiple heterogenous periods: asynchronous design with concurrent tasks.

Digital Television

Input Many frequencies

Video & Audio variable timing

Output Many frequencies

Processing Variable

Many video variants (see table)

Many audio variants (quality, number of speakers, ...)

Simple Video Processing Pipeline

multi task design complex TV

In modern television the format of the image can change (e.g. widescreen)

The user can set the refresh rate to higher values (e.g. 100Hz anti-flicker)

Different displays (CRT, LCD, Plasma) can be attached that need the image in different formats (interlaced, non-interlaced, different refresh rates)

Non interlaced images need special filtering of the image to prevent ragged images

Table with ATSC Video Formats

spec	Horizont	al pixels	Vertical	Aspect	Monitor	Format	Frames	Fields	Transmitted	
			pixels	ratio	interface	name	per sec	per sec	interlaced	
						1080i60	30	60	yes	
		1920	1080	16:09	1080i	1080p30	30	30	no	
						1080p24	24	24	no	
						720p60	60	60	no	
		1280	720	16:09	720p	720p30	30	30	no	
						720p24	24	24	no	
					480p	480p60	60	60	no	
		704	480	16:09		480i60	30	60	yes	
					480i	480p30	30	30	no	
ATSC						480p24	24	24	no	
					480p	480p60	60	60	no	
		704	480	04:03		480i60	30	60	yes	
					480i	480p30	30	30	no	
						480p24	24	24	no	
					480p	480p60	60	60	no	
		640	480	04:03		480i60	30	60	yes	
		640			480i	480p30	30	30	no	
						480p24	24	24	no	
NTSC	»640		483	04:03	Note 1	Note 1	30	60	yes	
Note 1: Some people refer to NTSC as 480i.										

Source: http://www.hdtvprimer.com/ISSUES/what_is_ATSC.html

Data Packets in Digital TV

Packet

Summary Case Digital Television

From Analog TV to Digital TV

Real-life applications rapidly introduce all kinds of variations Concurrent tasks cope with different periods The ASP TM course is partially derived from the EXARCH course developed at Philips CTT by Ton Kostelijk and Gerrit Muller.

Extensions and additional slides have been developed at *ESI* by *Teun Hendriks*, *Roland Mathijssen* and *Gerrit Muller*.