
Formula Based Performance Design
-

Gerrit Muller
HSN-NISE

Frogs vei 41 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Performance models are mostly simple mathematical formulas. The challenge is
to model the performance at an appropriate level. In this presentation we introduce
several levels of modeling, labeled zeroth order, second order, et cetera. AS illius-
tration we use the performance of MRI reconstruction.

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from HSN-NISE is required.
This material is preliminary course material. The final material and course information can be found at:
www.esi.nl/cursus.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.0 status: draft July 4, 2016

www.esi.nl/cursus

1 Introduction

We recommend to model performance by using simple, secondary school, mathe-
matical formulas. Frequently designers tend to start using more advanced techniques
and formalisms, in an attempt to be accurate. In this paper we discuss an approach
using simple mathematical formulas, starting with the most simple formulas and
refining these formulas as far as needed.

2 Using n-order formulas

The basis for most performance models are simple mathematical formulas, using
secondary school math. The challenge is to keep the models as simple as possible,
as discussed in the section about control design. We can express the degree of
detail in formulas by the order of the formula. Figure 1 shows such classification.

0
th
 order main function

parameters

order of magnitude

relevant for main function

1
st
 order add overhead

secondary function(s)
estimation

2
nd

 order interference effects

circumstances
more accurate, understanding

main function, overhead

and/or secondary functions

Figure 1: Theory Block 1: n Order Formulas

Figure 2 shows an example of a highly simplified model of the CPU load for
image processing. This formula assumes that the CPU load is directly proportional
to the number of pixels plus some time to perform the user interface tasks. We call
such a formula, where only the main parameter is present, a zeroth order formula.

tcpu total tcpu processing=

nx tpixelny= * *

tUI+

tcpu processing

Figure 2: CPU Time Formula Zero Order

It could be that the 0-order formula does not work well enough, for example
because overhead is significant. In Figure 3 the biggest overhead contribution is
added to the formula, in this example the context switch overhead.

Gerrit Muller
Formula Based Performance Design
July 4, 2016 version: 1.0

HSN-NISE

page: 1

tcpu total tcpu processing

tcontext switch

overhead

+= tUI

+

Figure 3: CPU Time Formula First Order

However, in a heavily loaded system may suffer additional loads due to the
context switches, the so-called second order effects. In Figure 4 these second order
effects are added to the formula. The second order impact may depend on the type
of system load. The second order terms might be parameterized to express this
relation. For example signal processing loads might cause low penalties, due to
high cache efficiency, while control processing might be much more sensitive to
these effects.

tcpu total tcpu processing tcontext switch

overhead

tstall time due to

context switching

+=

+

+

tstall time due to

cache efficiency

signal processing: high efficiency

control processing: low/medium efficiency

+tUI

Figure 4: CPU Time Formula Second Order

3 Example of n-order formulas in MR reconstruction

The reconstruction of MR images is a processing intensive operation. Fast recon-
structions are beneficial for the throughput of MRI scanners and are prerequisite
for a number of performance critical applications. Figure 5 shows a simplified
block diagram of an MRI scanner, the context of the MR reconstruction. The MR
data is digitized in the acquisition subsystem and transferred to the reconstruction
subsystem. The reconstructed images are stored in the data base and viewed at
the operator or viewing console. All subsystems are controlled by a central host
computer.

In Figure 6 a visualization and mathematical formulas are used in combination
to model the performance of the MR reconstruction. The visualization shows the

Gerrit Muller
Formula Based Performance Design
July 4, 2016 version: 1.0

HSN-NISE

page: 2

Host

Acquisition

Storage
Viewing

&Printing

m
a

g
n

e
t

g
ra

d
ie

n
ts

R
F

A
D

C Reconstruction

control

Figure 5: MR Reconstruction Context

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

Figure 6: MR Reconstruction Performance Zero Order

processing steps that are performed as reconstruction. Above the arrows it is shown
what the size of the data matrices is at that phase.

This 0-order model uses the Fast Fourier Transform (FFT) as the dominating
term contributing to the performance Most operations are directly proportional to
the matrix size shown above the formulas. The FFT itself is an order nlog(n) term,
parameterized with its corresponding load cfft.

Unfortunately the formulas don’t tell us much without quantification. Figure 7
provides us with some quantified input based on a FFT micro-benchmark: an FFT
on thousand points executes in about 5 msecs (typical performance figures for
processing hardware around 1990). The figure takes one typical use case, where a
512*256 raw image is reconstructed on a 256*256 image, to calculate the recon-
struction performance. For this use case and assumptions we get 1.2 seconds.

Gerrit Muller
Formula Based Performance Design
July 4, 2016 version: 1.0

HSN-NISE

page: 3

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

nraw-x = 512

nraw-y = 256

ny = 256

nx = 256

using:

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

+

512 * 1.2 + 256 * 2.4

~= 1.2 s

Figure 7: Zero Order Quantitative Example

trecon =

nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcorrections(nx ,ny)

Figure 8: MR Reconstruction Performance First Order

Figure 9 extends the model to also take the non-FFT processing into account.
These operations filter the raw data and perform some simple corrections on the
image. Both operations are proportional to the number of pixels that is processed.

Figure 9 provides the quantifications obtained by micro-benchmarking both
operations: 2 msec to process 1k points. Using the same numbers as Figure 7 we
get for filtering 512 ∗ 256 ∗ 2/1024ms ≈ 0.26s and for correction 256 ∗ 256 ∗
2/1024ms ≈ 0.13s. Both processing steps can not be ignored compared to the
FFT operation!

Finally we add bookkeeping and I/O type operations to the formula, see Figure 10.
In practice both terms often ruin the performance of well designed processing
kernels, mostly by a lack of attention.

Gerrit Muller
Formula Based Performance Design
July 4, 2016 version: 1.0

HSN-NISE

page: 4

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

Filter 1k points ~ 2 msec

(scales linearly with n)

Correction ~ 2 msec

(scales linearly with n)

Figure 9: First Order Quantitative Example

overhead

trecon = nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

tcol-overhead

tcorrections(nx ,ny)trow-overhead +tcontrol-overhead+

) +

) +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead

filter computations

read I/O

write I/O

malloc, free
transpose

bookkeeping

number
crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Figure 10: MR Reconstruction Performance Second Order

4 Summary

We have shown that performance can be modeled by starting with the formula for
the main function and its parameters. This formula is refined by adding factors that
significantly contribute to the (non-)performance.

We used MRI reconstruction as an example of these types of formulas. The
formulas are limited to multiplications and logarithms. In this example we have to
add quite some factors outside of the main functionality to obtain a usable perfor-
mance model: simple correcion and filter functions, bookkeeping, data-restructuring,
and input/output. We also showed that the formulas provide insight, especially the
impact of the different parameters, but that actual quantifications also add insight
in actual performance numbers and the relevance of the different terms.

Gerrit Muller
Formula Based Performance Design
July 4, 2016 version: 1.0

HSN-NISE

page: 5

5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. The approach is based on the EXARCH course created by Ton Kostelijk
and Gerrit Muller.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 1.0, date: 3 September, 2007 changed by: Gerrit Muller

• Created text by copying from PerformanceEngineering
• changed logo to PHRTreconstructionMRzeroOrder
• changed status to draft

Version: 0, date: 17 February, 2007 changed by: Gerrit Muller
• Created, via refeactoring of ASP course, no changelog yet

Gerrit Muller
Formula Based Performance Design
July 4, 2016 version: 1.0

HSN-NISE

page: 6

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

	Introduction
	Using n-order formulas
	Example of n-order formulas in MR reconstruction
	Summary
	Acknowledgements

