Module Modeling and Analysis course info

by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module provides the information about the "Modeling and Analysis" course.

September 9, 2018 status: planned

version: 0.2

Modeling and Analysis Overview Content

goal of this module

Provide overview and context for complete course.

Understand and experience the connection between problem and solution.

content of this module

Positioning of Modeling and Analysis (M&A)

Why, what and how of M&A

Program of the complete course

Overview of M&A approach

exercise

Quick scan of one case

Electronic Patient Record, Video on Demand, or Health Care Archive

Modeling and Analysis Overview

by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The course Modeling and Analysis is described. The program consists of 10 modules. The course format, iterating theory, illustration and interaction is explained. The course heavily emphasizes the practical application of the method. This presentation shows the overview of the modeling and analysis approach and the methods and techniques that will be elaborated in the rest of the course.

September 9, 2018 status: preliminary draft

version: 1.0

Positioning Modeling and Analysis in Architecting

Modeling and Analysis supports:

understanding

exploration

optimization

verification

Type of model depends on project phase

Models have a goal

Goals evolve and models evolve

Techniques are used to reach this goal

Purpose of Modeling

What to Model?

key performance: (emerging?) properties: business: profit, etc. throughput, response resource utilization operational costs reliability load stakeholder benefits availability latency, throughput scalability quality, accuracy workload risks and their mutual relations usage context system enterprise & design requirements black box view realization users technology business: creation profit, etc. life cycle business operational costs stakeholder benefits life cycle context workload risks

Program of Modeling and Analysis Course

day 1	 overall approach intro, overall approach, exercise overall approach input facts, data, uncertainties quantification, measurements, modeling, validation, technology background, lifecycle and business input sources
day 2	3. system modeling purpose, approaches, patterns, modularity, parametrization, means, exploration, visualization, micro-benchmarking, characterization, performance as example 4. application, life-cycle modeling reiteration of modeling approach (see module 3), applied on customer application and business, and life cycle
day 3	 5. integration and reasoning relating key driver models to design models, model based threads of reasoning, FMEA-like approach, modeling in project life-cycle 6. analysis, using models sensitivity, robustness, worst case, working range, scalability, exceptions, changes

Overview of Approach

collect input data

model and analyse relevant issues

for different stakeholders& concerns

integration and reasoning

Iteration over viewpoints

Modeling and Analysis: Background of the Course

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The background ideas of the Modeling and Analysis course are collected in a number of diagrams. These diagrams are provided solely as background and probably should not be shown during the course itself.

Distribution

September 9, 2018 status: planned version: 0.1

logo TBD

What and Why to Model

how well is the customer served? how credible becomes the solution? how much are time and effort reduced? how much is the risk reduced? how much is the solution improved?

purpose and type of model depend on project life cycle

type of model and views depend on purpose

level of abstraction working range calibration of model robustness of model time to first results and feedback effort evolvability (adaptation to new questions)

decision factors:

accuracy of model

credibility of results

how much effort is needed to create model(s)? how much effort is needed to use and maintain model(s)? how much time is needed to obtain useful result?

Models, Measurements, Expectations and Assumptions

Unknowns, Uncertainties, ...

usage context

enterprise & users

requirements black box view system

design realization technology

unexpected use assumptions uncertainties unknowns dynamics interference

hidden properties assumptions unknowns uncertainties dynamics interference

Starting Points of the Course

practical, immediately applicable in day-to-day work

(inter)active: daily hands-on exercises on case(s)

target: understanding, insight; way-of-working

method, tool, language and domain agnostic

Modeling and Analysis Questions

- 1. Why do we model? what are indicators that modeling and analysis beyond "business as usual" architecture is needed. What questions trigger M & A.
- 2. What do we model? what kinds of views do we need to consider (4+1, IBM GS Method, Zachman, CAFCR)
- 3. When do we model? what models are needed at various points in the project lifecycle.
- 4. What is the appropriate type of model? formula, visualization, executable, simulation
- 5. What is the required accuracy of the model? when do we achieve the desired risk mitigation
- 6. What is the appropriate level of abstraction? how much details have to be taken into account, versus how much effort can we afford
- 7. How to calibrate models? models are based on facts and assumptions. The model outcome deppends strongly on these input data. Note again the tension between effort to make and calibrate versus the value in terms of risk mitigation.
- 8. How to use models?

Recommendations as Red Thread

Electronic Patient Record:

+ relevant health care related information available at the right place for the right person

Long Term Health Care Archive:

+ extreme robust, persistent, high availability archive for large chain of hospitals

Video on Demand Backoffice:

+ large scale content database with fast response download capability including billing, DRM et cetera

Modeling and Analysis Exercise

make a quick scan over the following views:

- 0. what is this exercise about?
- 1. context: stakeholders, concerns, application
- 2. system design and realization
- 3. requirements
- 4. operational context
- 5. qualities
- use time boxes of 15 minutes per view
- show the most dominant decomposition(s) of that view, as diagram or as a list; quantify whenever possible

Reflection on Exercise

- + collectively we know quite a lot
- + broad overview in short amount of time
- ~ some "hot" issues appear to be less relevant
- #questions >> #answers

baseline for next refining steps

Modeling and Analysis Summary

Conclusions

Modeling and Analysis must provide more *in-depth* answers for questions that are breadth relevant.

Modeling and Analysis is a means that supports *requirements* management, architecting and project management.

Modeling and Analysis ranges from business aspects to technical decisions.

Good models are small, simple and goal-driven.

Techniques, Models, Heuristics of this module

Context viewpoints

Fast iteration based on time-boxing

