Mastering Systems Integration; Assignments

by Gerrit Muller TNO-ESI, USN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

All assignments of the course Mastering Systems Integration.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

June 5, 2018 status: preliminary

draft

version: 0.2

logo TBD

Discuss the Case

Sketch the system-of-interest

What are the most relevant project goals?

Sketch the project master plan (the main milestones and their timing)

Determine KPPs

Determine 5 to 10 Key Performance Parameters (KPP) of the System

Quantify these KPPs

Define the KPPs roughly

VUCA Causes Risks

VUCA =

Volatility

Uncertainty

Complexity

Ambiguity

Assess Risks of KPPs

Assess the risk fo each KPP

Explain why this KPP may suffer from this risk

Select one KPP to work on in the remainder of the Faceto-Face workshop

this KPP should be "hot" (lot of organizational buzz)

you may also select two "conflicting" KPPs

Describe Typical Use

Define the typical use (by customer stakeholders) of the system in relation to the selected KPP.

This use case helps to define the KPP further

This use case will guide the verifciation and validation

Make Block Diagrams

Make block diagrams of the system, the software, and the hardware.

Block diagrams show parts, and interfaces or connections.

These block diagrams need tens of blocks.

Model Dynamic Behavior

Model the Dynamic Behavior of the System.

Focus on the Dynamic Behavior that relates to the KPP.

Visualize the Dynamic Behavior with various sketches, diagrams, or graphs (see Visualizing Dynamic Behavior for inspiration).

Make Budget

Map the Dynamic Behavior on the block diagrams.

Transform this into a budget:

Quantify contributions of parts and functions to the KPP.

Re-assess Risks

Re-assess the risks for the chosen KPP

using the insights gained so far

These risks are leading when defining the integration sequence

Determine an Incremental Integration Sequence

Determine an incremental *integration sequence* to build confidence in the KPP ASAP.

Strive for about 6 main increments.

Reason starting at the end result and then backward in time.

For each increment determine its prerequisites in terms of parts, interfaces, functions, and performance levels.

Assess Other Planning Perspectives

assess the planning from the perspectives:

- *fitness for purpose* in customer context
- integration configurations and testware
- supplier and logistics status
- technology readiness
- development and resource status

Transform into PERT plan

Transform the integration sequence and the planning from the other perspectives into a PERT-plan.

PERT focus on activities and their mutual relations; the logic of the plan. Time and resources are secondary information.

Assess Robustness

Assess the robustness of the PERT-plan for changes.

All assumptions in the integration plan will probably change. A good integration PERT-plan shouldn't change much.

Prepare Final Presentation

Prepare a presentation for the management

to communicate the systems integration approach

its rationale

 and its impact on the project, the test configurations, the schedule, the organization, and the suppliers

Add a slide on the course learnings and reflections

