
Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

1

Execution Architecture for
Real-Time Systems

Dr. A.P. Kostelijk (Ton)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

2

Content

• Discussion on
performance issues

• Introductory examples
• OS: process
 context switch, process-

creation, thread, co-operative /
preemptive multi-tasking,
scheduling, EDF, RMS, RMA.

• How to design concur-
rency / multi-tasking

You:
• Discussion

• Various scheduling
exercises

• RMA exercise

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

3

Discussion on performance issues

HW

SW

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

4

Model: Levels of execution

4. Busses and buffering: data comm.

1. Task and priority assignment

2. Algorithms, source code

3. Machine code, CPU

5. Device access

HW

SW

Execution architecture

Execution architecture

Compiler

HW arch, settings

HW arch, settings

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

5

Content

• Discussion on
performance issues

• Introductory examples
• OS: process
 context switch, process-

creation, thread, preemptive
multi-tasking, scheduling, EDF,
RMS, RMA.

• How to design concur-
rency / multi-tasking

You:
• Discussion

• Various scheduling
exercises

• RMA exercise

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

6

Example 1: a coffee machine

�

�

��

D
D

E

F G
D � �DL � DI �

a = place new filter; 1
b = add new coffee; 1
c = fill water reservoir; 2
d = heat water and pour; 2

PDLQ���^�D����E����F����G����`� W� ��
PDLQ���^�F����D����E����G����`� W� ��
PDLQ���^�DBL����FBL����DBI����E����FBI����G����`� W� ��

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

7

Observations
• Timing requirements of actions are determined

by dependency relations and deadlines.
• Hard-coded schedule of actions:

+ Reliable, easy testable
+ For small systems might be the best choice.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

8

Example 2: a TV system

Odd field

Even field

Txt lines in vertical blankingTxt lines in vertical blanking

TV signal

50 fields per second

Remote control
x1 y1 x2

Led flashing Led off Led flashing
xi + yi ≈ 1 ms

625

720 pixels

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

9

Example 2: a TV system

• Simultaneous TV-system activities, e.g.,
– 1) TXT processing and
– 2) be able to respond to a Remote Cntrl key-press.

• One can include RC command checks in the
TXT processing code. Mix unrelated things.

• RC-key press Timing Requirement is 0.5 s,
TXT processing Timing Req. is 20 ms.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

10

Observations revised
• Timing requirements of actions are determined

by dependency relations and deadlines.
• Interrupts can be used for concurrency.

– The RC-bit level is handled in this way.
• Hard-coded schedule:

– it mixes unrelated functionality, and
– lacks extendibility.
– For small systems might be the best choice.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

11

Device - CPU Access

• Polling
Each x ms
‘check status’;

• Interrupt
– signal: handshake
– forces next instruction

to be a predetermined
routine call

CPU

status
reg

data
reg

Device
mechanism

bus

Int.
cntl

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

12

Operating system, overview

• Supports concurrency, based on the concept
of ‘process’, a virtual processor.

• Supports functions to handle problems
caused by concurrency, e.g., mutual
exclusion for a single-client resource.

• Auxiliary functions, like date/time, file system,
networking, security, etc. etc.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

13

Why multiple processes?

• Ease of programming: Separate programs execute
quasi-parallel on a CPU.

• Handle urgency in particular for real-time
activities.

• Utilisation of idle time. Continue with other
processing when an activity is waiting for external
response.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

14

Processes

• A process is a unique execution of a
program or function, managed by the OS.
– Several copies of a program may run

simultaneously or at different times.
• A process has its own state:

– processor status (registers, IR)
– memory

• stack, heap, process-status

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

15

Processes and CPUs

• Activation record:
copy of process state.

• Context switch:
– current CPU context

goes out;
– new CPU context goes

in.
CPU

PC

registers

Process 1’s
Activation

record

Process 2 ’s
Activation

Record
...

memory

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

16

Threads

• Separate memory spaces per process require
a Memory Management Unit (by using
virtual memory).

• Thread = lightweight process: a process that
shares memory space with other processes.

• Threads versus Processes: a reliability /
safety and cost issue.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

17

Context switching

• Initiation?
• Switch to what other process?

• Answers = Characteristic of Operating
System

– Preemptive multitasking

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

18

Preemptive context switching
• OS saves current process’s state in an

activation record.
• OS chooses next process p to run (scheduling).
• OS installs activation record p as current CPU

state, and the next process resumes.
• Do CPU caches improve context switching?

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

19

Process state
• A process can be in one

of three states:
– executing on the CPU;
– ready to run;
– blocking / waiting for

data.

• Context switch caused
when other process is
made ready, like IPC,
mutex, semaphores, etc.

executing

ready waiting

gets data
and CPU

needs
data

gets data

needs data

preemptedgets
CPU

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

20

OS-call and scheduler

Scheduler
Ready

Blocked

AR1 AR2

ARa ARb

OS-call

OS layer

Resume PxP1

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

21

Interrupts and scheduler

Scheduler
Ready

Blocked

AR1 AR2

ARa ARb

Interrupt

P1

AR1

Interrupt
Routine

Resume

P1

Interrupt with OS-call in Routine

P1

AR1

Resume Px

OS layer

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

22

Preemptive multitasking
• Most powerful form of multitasking:

– OS controls when contexts switch; (cause)
– OS determines what process runs next.

• Cause:
– interrupts, e.g., a timer,
– inter-process-calls, etc.
→ anything that can make a process ready to run

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

23

Flow of control with preemption

time

P1 OS P1 OS P2

cause cause

SW Animation TXT processingSW Animation

Timer-tick TXT-slicer interrupt

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

24

Embedded vs. general-purpose
scheduling

• Workstations try to avoid starving processes
of CPU access.
– Fairness = access to CPU.

• Embedded systems must meet deadlines.
– Low-priority processes may not run for a long

time. Risk of starvation.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

25

Priority-driven scheduling
• Each process has a priority.
• CPU goes to highest-priority process that is

ready.
• Priorities determine scheduling policy:

– fixed priority;
– time-varying priorities.
– round-robin scheduling in case of equal

priorities

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

26

Priority-based Tasks

2
1

k

…… Interrupt-levels

Process / Thread 2
1

m

…

Pr
io

rit
y

→

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

27

Priority-driven scheduling
example

• Rules:
– each process has a fixed priority (3 = highest);
– highest-priority ready process gets CPU;
– process continues until done.

• Processes
– P1: priority 3, execution time 10
– P2: priority 2, execution time 30
– P3: priority 1, execution time 20

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

28

Priority-driven scheduling
example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

29

Simplified model

• Zero context switch time.
• No data dependencies between processes.
• Process execution time is constant.
• Deadline is at end of period.
• Highest-priority ready process runs.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

30

Earliest-deadline-first scheduling

• EDF: dynamic priority scheduling scheme.
• Process closest to its deadline is given

highest priority. In other words: the
deadlines must be available.

• Requires recalculating process-priorities at
every context switch-cause.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

31

Exercise: Earliest Deadline First
7KUHDG 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� � � ������
7KUHDG�� �� �
7KUHDG�� �� �

0 9 15 18 23
Thread 1

Thread 2

Thread 3

3

Suppose at t = 0, all threads are ready to process the
arrived trigger.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

32

Answer to exercise: EDF
7KUHDG 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� � � ������
7KUHDG�� �� � ������
7KUHDG�� �� � ������

88.3 %

0 9 15 18 23
3 3 3

2

4

5

1

3

Thread 1

Thread 2

Thread 3

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

33

EDF evaluation

• EDF can utilize 100% of CPU.
• Overhead in context-switching is large.
• Deadlines (not only repetition rates) must

explicitly be available in the system.

• Theoretically attractive, but hardly ever
used.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

34

Rate-Monotonic Scheduling

• RMS: static priority scheduling scheme.
• Priority assignment: the shorter deadline,

the higher the priority.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

35

Exercise: Rate-Monotonic S
7KUHDG 3ULRULW\ 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� � � ������
7KUHDG�� �� � ������
7KUHDG�� �� � ������

88.3%

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Suppose at t = 0, all threads are ready to process the
arrived trigger.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

36

7KUHDG 3ULRULW\ 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� +LJK � � ������
7KUHDG�� 0HGLXP �� � ������
7KUHDG�� /RZ �� � ������

88.3 %

Answer to exercise: RMS (vs EDF)

0 9 15 18 23
3 3 3

2

3

5

-1 ??1

3

Thread 1

Thread 2

Thread 3

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

37

0 9 15 18 23
3 3 3

2

3

5

-1 ??1

3

Thread 1

Thread 2

Thread 3

Answer to exercise: RMS (vs EDF)
0 9 15 18 23

3 3 3

2

4

5

1

3

Thread 1

Thread 2

Thread 3

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

38

RMS evaluation
• RMS cannot utilize 100% = 1.0 of CPU,

but for 1,2,3,4 … ∞ processes:
1.00, 0.83, 0.78, 0.76, … log 2 = 0.69.

• RMS guarantees that all processes will
always meet their deadlines, for any
interleaving of processes.

• With fixed priorities, context switch
overhead is limited.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

39

RMS evaluation (cont’d)

• For specific cases utilization bound higher,
up to 0.88 load for large n.

• A processor running only hard-real-time
processes is rare. For soft-RT less a problem.

• A lot of additional theory exists.
– Meeting deadlines in hard-real-time systems, by L.P.

Briand and D.M. Roy.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

40

Real-time scheduling theory,
utilization bound

• Set of n tasks with periods T_i, and process
time P_i, load u_i = P_i / T_i,

• Schedule is at least possible when tasks are
independent and:

• 1.00, 0.83, 0.78, 0.76, …. log 2 = 0.69.







−≤≡ ∑ 12

1
n

ii nuLoad

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

41

Content

• Discussion on
performance issues

• Introductory examples
• OS: process
 context switch, process-

creation, thread, co-operative /
preemptive multi-tasking,
scheduling, EDF, RMS, RMA.

• How to design concur-
rency / multi-tasking

You:
• Discussion

• Various scheduling
exercises

• RMA exercise

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

42

How to design concurrency

• Introduction: Why? Grounds?
• Timing requirements
• Active versus passive
• Execution architecture steps
• Issues resulting from concurrency

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

43

Multiple processes?

Why?

• Handle urgency (meet
various deadlines
simultaneously)

• Ease of programming
unrelated functionality

• Utilisation of idle time

Why not?
• Ease of programming for

strongly related functionality
– Reduce unpredictability

• Context-switch overhead
– and inter-process communication

• Memory cost (e.g. multiple
stacks)

Design of concurrency is a crucial,
non-trivial part of an architecture.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

44

Execution architecture design
based on RMA.

Grounds:
• Function to Task mapping based on

Gomaa’s CODARTS rules.
• Scheduling of tasks based on RMS = rate-

monotonic scheduling
• Deadline analysis is known as Rate

Monotonic Analysis (RMA).

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

45

Execution architecture:
What are Timing Requirements?

System

∆t

Event / Trigger
Required deadline
Actual response

Multiple TRs:
concurrent responses.

n m
∆t∆t

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

46

What are Timing Requirements?

• What happens if a process doesn’t finish by
its timing requirement?
– Hard deadline: system fails if missed.
– Soft deadline: user may notice, but system

doesn’t necessarily fail.

– Periodic events: cyclic.
– Aperiod events, e.g. user-input.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

47

�

�

��

D
D

E
F G

D

What are timing requirements?

• Event
– external: signal: e.g. device or timer
– active or passive = interrupt or polling
– internal: handover some datastructure
– Dependency tree of actions = action flow

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

48

Terminology

• Action = response function.
• Task is a virtual processor, executing a set

of actions.
– A process or thread is a sequential execution of

a set of response functions, managed by the OS.
– An interrupt routine is a function that may be

triggered by an interrupt. Each interrupt-level
can be regarded as a task, executing a set of
interrupt routines.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

49

Priority-based Tasks

2
1

k

…… Interrupt-levels

Process / Thread 2
1

m

…

Pr
io

rit
y

→

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

50

Notation

(QFDSVXODWLRQ 7KUHDG 4XHXH

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

51

Passive versus Active

Object O1

2EMHFWV���PRGXOHV FRPPXQLFDWH YLD��PHPEHU�
IXQFWLRQV
$ SDVVLYH�PRGXOH�UXQV�LW¶V�IXQFWLRQV�RQ WKH�WDVN�

RI�D�FDOOHU��7KH�IXQFWLRQ�LV�V\QFKURQRXV�

)�
ERG\

FDOO7�

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

52

Passive versus Active

$FWLYH�REMHFWV���IXQFWLRQV�GHIHU�H[HFXWLRQ�WR�DQRWKHU�WDVN�
7KH�IXQFWLRQ�LV�DV\QFKURQRXV� RU�GHFRXSOHG�

Object O1

)�
ERG\

FDOO
7�

7�

4([HF�8QLW�8
UHGLUHFW

FDOO

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

53

Redirection

• Redirection data:
– function pointer,
– function arguments,
– execution unit id.

• Can be generalized to
a pattern to support
simple change.

• Decouple functional
and dynamical design.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

54

Overview of exec arch steps

1. Get an overview of all triggers, actions
and their timing requirements.

2. Action to task mapping

3. Task prioritisation

4. Measurement & RM Analysis

5. Tuning Let’s Party

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

55

Step 1: Inventorize triggers,
actions and timing requirements

Set Top Box
Satellite signal

User Input

Video

Audio

User Indication Smartcard

PC connection

LNB control

7UDQVSRUW6WUHDP
TS selection TS decoding &

descrambling

Content
Presentation

Sections

Audio/Vide
o decoding

Service Info

Entitlements

Smartcard

Graphics

EMMs only

Resident
Storage

Resident
Storage&RetrievalUser Input

User
Indications

Slave
CPU

Controlled by
CPU

User Input

User
Indications

Application
 Control

Synchronisation

ECMs
EMMs

 SI

Timer
Control

Time
Trigger

PCR

sections

(serial) (serial)

LNB control

LNB

LNB
on dish

TS status (serial)

3(6�6WUHDP

Satellite
signal

Teletext

$XGLR�9LGHR
3(6�6WUHDP

3(6�6WUHDP

Video + OSD
mixing

EEPROM

$�9�WR�79

HW clock

Audio/Video
backend

Set Top Box

PC
communicatio

Characters (serial)

Tuner band

Tuner band
settings

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

57

This is too complex ! ?

Yes, we have a problem and it’s complex

It’s a matter of
– beginning and
– simplification

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

58

3 dimensions of simplification

• Highest priorities are independent of others.
– do interrupt domain first. Reapply highest priority

simplification in case it’s still difficult.
• Select critical scenario’s

– for a TV: 1) play, 2) zap.
• Simplify by taking worst-case estimates. When

it analyses to ‘trouble’, either you can relax in a
more precise model, or you are in trouble.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

59

Step 2: Action to Task mapping

$FWLRQ�VHW�
)XQFWLRQ�VHW

([HF��
8QLWV�8

([HF��
3DUDPV 3

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

60

Action to Task Mapping

• 1: Task Structuring: Identify potential active
functions / modules.

• 2: Task Cohesion: Some may share a task.
• Criteria: see next sheet.

• Example:
– 1) SettopBox: 80 -> 20
– 2) TV: 150 -> 6

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

61

TM: Structuring criteria: active

• GOMAA - CODARTS structuring criteria:
– asynchronous device I/O
– resource monitors
– periodic functions
– control (object following a state-transition

diagram)
– user role (“sequential application”)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

62

TM: Cohesion step

• Characteristics:
– also known as ‘task-merging’
– global scope (architect)
– consider mapping of active objects on the same

execution unit (task)
– aim: reduce task-switching overhead and

memory requirements by reducing the number
of execution units

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

63

TM: Cohesion criteria

• GOMAA - CODARTS cohesion criteria:
– temporal cohesion (= same priority)

• different actions from the same event
• actions with similar periods (when independent)

– functional sequential cohesion (= no interference)
– control cohesion (= no interference, exclusive

calls)
– Assign priorities according to deadlines.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

64

Step 3. Task prioritisation

• Rate-monotonic =
shorter deadline <=> higher priority

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

65

Step 4: Analysis

• Situation table
• Measure processing times, and do RMA

6SHFLILFDWLRQ 'HVLJQ	 7HVW
6\VWHPHYHQW 3HULRG 'HDG�OLQH
(� �� �
(� �� ��

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

66

Step 4: RMA
6LWXDWLRQ�WDEOH

5HTXLUHPHQWV 'HVLJQ�DQG�7HVW
� V\V�HYHQWV
� SHULRG
� GHDGOLQH

� DFWLRQ�IORZ
� H[HFXWLRQ XQLW
� SULRULW\
� �VKDUHG UHVRXUFH�
� SURFHVV WLPH

� UHVSRQVH�WLPH
&DOFXODWHG���������
RU PRUH�VRSKLVWLFDWHG�

FRPSDUHG

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

67

Step 5: Tuning step

• Only when a deadline is not met:
– either the processor is idle now and then, and you could

benefit more from concurrency:
• redo from cohesion onwards

– or some bursts of context-switches appear
• use more cohesion here, or priority-setting should be changed

– otherwize: speed-up critical processing part (only now)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

68

Exercise!

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

69

Issues resulting from concurrency

Issues
• Reentrancy
• Synchronisation
• Shared resources

– Large blocking time
– Deadlocks
– Starvation

Means
Among others
• semaphores
• separate execution unit

(queue + task)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

70

Concurrency issue: Semaphores

• Semaphore: OS primitive for controlling
access.

• Protocol:
– Get access with P(s).
– Perform critical region operations.
– Release access with V(s).

• In general, initial value of n supports access to a
resource of n items.

Choice of size is
crucial !!

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

71

Concurrency issue: Reentrancy

• Ability of a program or function to execute
multiple times concurrently.

• This requires separate data per call.
– Either use local data (I.e., no global data) or

protect global data as being a shared resource.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

72

Concurrency issue: Synchronisation

• Use semaphores, with initial value 0.
– P(): probeer
– V(): verhoog

• When P(s) is called, it waits until a V(s) has
happened.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

73

Concurrency issue: Shared resources

• Example: shared date in memory, devices
• How to implement mutual exclusion:

– disable interrupts (better: partly) or
– disable task switching (even better: partly)
– but what about real-time deadlines?
– even better ...

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

74

Concurrency issue:

Shared resources (2)
• How to implement mutual exclusion (2)

– semaphores
• risk of priority inversion

– ex: small kitchen, bad temper, dishwashing, a fridge
– solution: priority inheritance / priority ceiling protocol

• use extra “blocking time” in addition to processing time
for the relevant events

• Risk of deadlocks

– thread decoupling: with “job queue” (e.g., I/O)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

75

Concurrency issue: Shared resources
(3) deadlocks

• Result of mutual exclusion that contain each
other. Mutex calls form a cyclic graph.

• Example: F1

F2

Resource 2

Resource 1

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

76

Concurrency issue: Shared resources
(4) deadlocks prevention

• Exclude a cyclic order:
– Order all modules based on their position in the entire

system based on usage structure.

• Module of order N is only allowed to synchro-
nously call methods from modules of order <N

• Example:
– ‘down’ calls may be synchronous, but ‘up’ calls must be

asynchronous (decoupled)
– ‘down-stream calls’ are synchronous, up-stream

decoupled.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

77

Concurrency issue: Shared resources
(5) deadlocks prevention

• Absence of deadlocks is guaranteed because
semaphores are always passed (locked, ‘P’) in the
same order, i.e., the order given by the module
ordering

• Now modules can implement their own (local)
protection schemes while guaranteeing global
absence of deadlocks.

• Yes, a specialized task (thread decoupling) works
as well!

• Critical sections must be kept short.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

78

Concurrency issue: Priorities:
starvation

• Actually this is impossible when applying
RMA with hard deadlines.

• However, an example:
– a monkey sitting on a keyboard

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

79

Conclusion

• Design of execution architecture, by using
concurrency is a crucial, non-trivial part of
an architecture.
– Requirements, function to taskmapping,

analysis.
– shared resources / synchronisation

• Upper part of the whole dynamic issue of a
system ...

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

80

Model: Levels of execution

4. Busses and buffering: data comm.

1. Task and priority assignment

2. Algorithms, source code

3. Machine code, CPU

5. Device access

HW

SW

Execution architecture

Execution architecture

Compiler

HW arch, settings

HW arch, settings

