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Content

• Discussion on 
performance issues

• Introductory examples
• OS: process
 context switch, process-

creation, thread, co-operative / 
preemptive multi-tasking, 
scheduling, EDF, RMS, RMA.

• How to design concur-
rency / multi-tasking

You: 
• Discussion

• Various scheduling 
exercises

• RMA exercise
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Discussion on performance issues

HW

SW
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Model: Levels of execution

4. Busses and buffering: data comm.

1. Task and priority assignment

2. Algorithms, source code

3. Machine code, CPU

5. Device access

HW

SW

Execution architecture

Execution architecture

Compiler

HW arch, settings

HW arch, settings
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Content

• Discussion on 
performance issues

• Introductory examples
• OS: process
 context switch, process-

creation, thread, preemptive 
multi-tasking, scheduling, EDF, 
RMS, RMA.

• How to design concur-
rency / multi-tasking

You: 
• Discussion

• Various scheduling 
exercises

• RMA exercise
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Example 1: a coffee machine

�

�

��

D
D

E

F G
D � �DL � DI �

a = place new filter;         1                  
b = add new coffee;         1                 
c = fill water reservoir;  2
d = heat water and pour;  2

PDLQ���^�D����E����F����G����`� W� ��
PDLQ���^�F����D����E����G����`� W� ��
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Observations
• Timing requirements of actions are determined 

by dependency relations and deadlines. 
• Hard-coded schedule of actions:

+ Reliable, easy testable
+ For small systems might be the best choice.
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Example 2: a TV system

Odd field

Even field

Txt lines in vertical blankingTxt lines in vertical blanking

TV signal

50 fields per second

Remote control
x1 y1 x2

Led flashing Led off Led flashing
xi + yi ≈ 1 ms 

625

720 pixels
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Example 2: a TV system

• Simultaneous TV-system activities, e.g., 
– 1) TXT processing and 
– 2) be able to respond to a Remote Cntrl key-press.

• One can include RC command checks in the 
TXT processing code. Mix unrelated things.

• RC-key press Timing Requirement is 0.5 s, 
TXT processing Timing Req. is 20 ms. 
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Observations revised
• Timing requirements of actions are determined 

by dependency relations and deadlines. 
• Interrupts can be used for concurrency.

– The RC-bit level is handled in this way. 
• Hard-coded schedule:

– it mixes unrelated functionality, and 
– lacks extendibility.
– For small systems might be the best choice.
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Device - CPU Access

• Polling 
Each x ms 
‘check status’;

• Interrupt
– signal: handshake
– forces next instruction 

to be a predetermined 
routine call

CPU

status
reg

data
reg

Device
mechanism

bus

Int.
cntl
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Operating system, overview

• Supports concurrency, based on the concept 
of ‘process’, a virtual processor.

• Supports functions to handle problems 
caused by concurrency, e.g., mutual 
exclusion for a single-client resource.

• Auxiliary functions, like date/time, file system, 
networking, security, etc. etc.
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Why multiple processes?

• Ease of programming: Separate programs execute 
quasi-parallel on a CPU.

• Handle urgency in particular for real-time 
activities. 

• Utilisation of idle time. Continue with other 
processing when an activity is waiting for external 
response.
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Processes

• A process is a unique execution of a 
program or function, managed by the OS.
– Several copies of a program may run 

simultaneously or at different times.
• A process has its own state:

– processor status (registers, IR)
– memory

• stack, heap, process-status
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Processes and CPUs

• Activation record:
copy of process state.

• Context switch:
– current CPU context 

goes out;
– new CPU context goes 

in.
CPU

PC

registers

Process 1’s 
Activation 

record

Process 2 ’s 
Activation

Record 
...

memory
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Threads

• Separate memory spaces per process require 
a Memory Management Unit (by using 
virtual memory).

• Thread = lightweight process: a process that 
shares memory space with other processes.

• Threads versus Processes: a reliability / 
safety and cost issue. 
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Context switching

• Initiation?
• Switch to what other process?

• Answers = Characteristic of Operating 
System 

– Preemptive multitasking
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Preemptive context switching
• OS saves current process’s state in an 

activation record.
• OS chooses next process p to run (scheduling).
• OS installs activation record p as current CPU 

state, and the next process resumes. 
• Do CPU caches improve context switching?
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Process state
• A process can be in one 

of three states:
– executing on the CPU;
– ready to run;
– blocking / waiting for 

data.

• Context switch caused 
when other process is 
made ready, like IPC,
mutex, semaphores, etc. 

executing

ready waiting

gets data
and CPU

needs
data

gets data

needs data

preemptedgets
CPU
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OS-call and scheduler

Scheduler
Ready

Blocked

AR1 AR2

ARa ARb

OS-call

OS layer

Resume PxP1
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Interrupts and scheduler

Scheduler
Ready

Blocked

AR1 AR2

ARa ARb

Interrupt

P1

AR1

Interrupt 
Routine

Resume

P1

Interrupt with OS-call in Routine

P1

AR1

Resume Px

OS layer
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Preemptive multitasking
• Most powerful form of multitasking:

– OS controls when contexts switch; (cause)
– OS determines what process runs next.

• Cause: 
– interrupts, e.g., a timer,
– inter-process-calls, etc.
→ anything that can make a process ready to run
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Flow of control with preemption

time

P1 OS P1 OS P2

cause cause

SW Animation TXT processingSW Animation

Timer-tick TXT-slicer interrupt
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Embedded vs. general-purpose 
scheduling

• Workstations try to avoid starving processes 
of CPU access.
– Fairness = access to CPU.

• Embedded systems must meet deadlines.
– Low-priority processes may not run for a long 

time. Risk of starvation.
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Priority-driven scheduling
• Each process has a priority.
• CPU goes to highest-priority process that is 

ready.
• Priorities determine scheduling policy:

– fixed priority; 
– time-varying priorities.
– round-robin scheduling in case of equal 

priorities
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Priority-based Tasks 
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Priority-driven scheduling 
example

• Rules:
– each process has a fixed priority (3 = highest);
– highest-priority ready process gets CPU;
– process continues until done.

• Processes
– P1: priority 3, execution time 10
– P2: priority 2, execution time 30
– P3: priority 1, execution time 20
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Priority-driven scheduling 
example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3
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Simplified model

• Zero context switch time.
• No data dependencies between processes.
• Process execution time is constant.
• Deadline is at end of period.
• Highest-priority ready process runs.
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Earliest-deadline-first scheduling

• EDF: dynamic priority scheduling scheme.
• Process closest to its deadline is given 

highest priority. In other words: the 
deadlines must be available.

• Requires recalculating process-priorities at 
every context switch-cause.



Version 0.1 Ton Kostelijk - Philips Digital 
Systems Labs

31

Exercise: Earliest Deadline First
7KUHDG 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� � � ������
7KUHDG�� �� �
7KUHDG�� �� �

0 9 15 18 23
Thread 1

Thread 2

Thread 3

3

Suppose at t = 0, all threads are ready to process the 
arrived trigger. 
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Answer to exercise: EDF
7KUHDG 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� � � ������
7KUHDG�� �� � ������
7KUHDG�� �� � ������

88.3 %

0 9 15 18 23
3 3 3

2

4

5

1

3

Thread 1

Thread 2

Thread 3
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EDF evaluation

• EDF can utilize 100% of CPU.
• Overhead in context-switching is large.
• Deadlines (not only repetition rates) must 

explicitly be available in the system.

• Theoretically attractive, but hardly ever 
used.
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Rate-Monotonic Scheduling

• RMS: static priority scheduling scheme.
• Priority assignment: the shorter deadline, 

the higher the priority. 
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Exercise: Rate-Monotonic S
7KUHDG 3ULRULW\ 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� � � ������
7KUHDG�� �� � ������
7KUHDG�� �� � ������

88.3%

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Suppose at t = 0, all threads are ready to process the 
arrived trigger. 
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7KUHDG 3ULRULW\ 3HULRG� �GHDGOLQH 3URFHVVLQJ /RDG
7KUHDG�� +LJK � � ������
7KUHDG�� 0HGLXP �� � ������
7KUHDG�� /RZ �� � ������

88.3 %

Answer to exercise: RMS (vs EDF)

0 9 15 18 23
3 3 3

2

3

5

-1 ??1

3

Thread 1

Thread 2

Thread 3
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0 9 15 18 23
3 3 3

2

3

5

-1 ??1

3

Thread 1

Thread 2

Thread 3

Answer to exercise: RMS (vs EDF)
0 9 15 18 23

3 3 3

2

4

5

1

3

Thread 1

Thread 2

Thread 3
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RMS evaluation
• RMS cannot utilize 100% = 1.0 of CPU,  

but for 1,2,3,4 … ∞ processes: 
1.00, 0.83, 0.78, 0.76, … log 2 = 0.69.

• RMS guarantees that all processes will 
always meet their deadlines, for any 
interleaving of processes.

• With fixed priorities, context switch 
overhead is limited.
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RMS evaluation (cont’d)

• For specific cases utilization bound higher, 
up to 0.88 load for large n.

• A processor running only hard-real-time 
processes is rare. For soft-RT less a problem.

• A lot of additional theory exists.
– Meeting deadlines in hard-real-time systems, by L.P.

Briand and D.M. Roy.
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Real-time scheduling theory, 
utilization bound

• Set of n tasks with periods T_i, and process 
time P_i, load u_i = P_i / T_i,

• Schedule is at least possible when tasks are 
independent and:

• 1.00, 0.83, 0.78, 0.76, …. log 2 = 0.69.







−≤≡ ∑ 12

1
n

ii nuLoad
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Content

• Discussion on 
performance issues

• Introductory examples
• OS: process
 context switch, process-

creation, thread, co-operative / 
preemptive multi-tasking, 
scheduling, EDF, RMS, RMA.

• How to design concur-
rency / multi-tasking

You: 
• Discussion

• Various scheduling 
exercises

• RMA exercise
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How to design concurrency

• Introduction: Why? Grounds?
• Timing requirements
• Active versus passive
• Execution architecture steps
• Issues resulting from concurrency
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Multiple processes?

Why?

• Handle urgency (meet 
various deadlines 
simultaneously)

• Ease of programming 
unrelated functionality

• Utilisation of idle time 

Why not?
• Ease of programming for 

strongly related functionality
– Reduce unpredictability

• Context-switch overhead
– and inter-process communication

• Memory cost (e.g. multiple 
stacks)

Design of concurrency is a crucial, 
non-trivial part of an architecture. 
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Execution architecture design
based on RMA.

Grounds:
• Function to Task mapping based on 

Gomaa’s CODARTS rules.
• Scheduling of tasks based on RMS = rate-

monotonic scheduling
• Deadline analysis is known as Rate 

Monotonic Analysis (RMA).
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Execution architecture:
What are Timing Requirements?

System

∆t

Event / Trigger
Required deadline
Actual response

Multiple TRs: 
concurrent responses.

n m
∆t∆t
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What are Timing Requirements?

• What happens if a process doesn’t finish by 
its timing requirement?
– Hard deadline: system fails if missed.
– Soft deadline: user may notice, but system 

doesn’t necessarily fail.

– Periodic events: cyclic.
– Aperiod events, e.g. user-input.
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What are timing requirements?

• Event 
– external: signal: e.g. device or timer
– active or passive = interrupt or polling
– internal: handover some datastructure
– Dependency tree of actions = action flow
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Terminology

• Action = response function. 
• Task is a virtual processor, executing a set 

of actions. 
– A process or thread is a sequential execution of 

a set of response functions, managed by the OS.
– An interrupt routine is a function that may be 

triggered by an interrupt. Each interrupt-level
can be regarded as a task, executing a set of 
interrupt routines.
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Priority-based Tasks 
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Notation

(QFDSVXODWLRQ 7KUHDG 4XHXH



Version 0.1 Ton Kostelijk - Philips Digital 
Systems Labs

51

Passive versus Active

Object O1

2EMHFWV���PRGXOHV FRPPXQLFDWH YLD��PHPEHU�
IXQFWLRQV
$ SDVVLYH�PRGXOH�UXQV�LW¶V�IXQFWLRQV�RQ WKH�WDVN�

RI�D�FDOOHU��7KH�IXQFWLRQ�LV�V\QFKURQRXV�

)�
ERG\

FDOO7�
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Passive versus Active

$FWLYH�REMHFWV���IXQFWLRQV�GHIHU�H[HFXWLRQ�WR�DQRWKHU�WDVN�
7KH�IXQFWLRQ�LV�DV\QFKURQRXV� RU�GHFRXSOHG�

Object O1

)�
ERG\

FDOO
7�

7�

4([HF�8QLW�8
UHGLUHFW

FDOO
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Redirection

• Redirection data: 
– function pointer, 
– function arguments,
– execution unit id.

• Can be generalized to 
a pattern to support 
simple change.

• Decouple functional 
and dynamical design.
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Overview of exec arch steps

1. Get an overview of all triggers, actions
and their timing requirements.

2. Action to task mapping

3. Task prioritisation

4. Measurement & RM Analysis 

5. Tuning Let’s Party
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Step 1: Inventorize triggers, 
actions and timing requirements

Set Top Box
Satellite signal

User Input

Video

Audio

User Indication Smartcard

PC connection

LNB control



7UDQVSRUW6WUHDP
TS selection TS decoding &

descrambling

Content
Presentation

Sections

Audio/Vide
o decoding

Service Info

Entitlements

Smartcard

Graphics

EMMs only

Resident
Storage

Resident
Storage&RetrievalUser Input

User
Indications

Slave
CPU

Controlled by
CPU

User Input

User
Indications

Application
 Control

Synchronisation

ECMs
EMMs

 SI

Timer
Control

Time
Trigger

PCR

sections

(serial) (serial)

LNB control

LNB

LNB
on dish

TS status (serial)

3(6�6WUHDP

Satellite
signal

Teletext

$XGLR�9LGHR
3(6�6WUHDP

3(6�6WUHDP

Video + OSD
mixing

EEPROM

$�9�WR�79

HW clock

Audio/Video
backend

Set Top Box

PC
communicatio

Characters (serial)

Tuner band

Tuner band
settings



Version 0.1 Ton Kostelijk - Philips Digital 
Systems Labs

57

This is too complex !  ?

Yes, we have a problem and it’s complex

It’s a matter of 
– beginning and 
– simplification
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3 dimensions of simplification

• Highest priorities are independent of others.
– do interrupt domain first. Reapply highest priority 

simplification in case it’s still difficult.
• Select critical scenario’s 

– for a TV: 1) play, 2) zap.
• Simplify by taking worst-case estimates. When 

it analyses to ‘trouble’, either you can relax in a 
more precise model, or you are in trouble.
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Step 2: Action to Task mapping

$FWLRQ�VHW� 
)XQFWLRQ�VHW

([HF��
8QLWV�8

([HF��
3DUDPV 3
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Action to Task Mapping

• 1: Task Structuring: Identify potential active 
functions / modules.

• 2: Task Cohesion: Some may share a task.
• Criteria: see next sheet.

• Example: 
– 1) SettopBox: 80 -> 20 
– 2) TV: 150 -> 6



Version 0.1 Ton Kostelijk - Philips Digital 
Systems Labs

61

TM: Structuring criteria: active

• GOMAA - CODARTS structuring criteria: 
– asynchronous device I/O
– resource monitors
– periodic functions
– control (object following a state-transition

diagram)
– user role (“sequential application”)
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TM: Cohesion step

• Characteristics:
– also known as ‘task-merging’
– global scope (architect)
– consider mapping of active objects on the same 

execution unit (task)
– aim: reduce task-switching overhead and

memory requirements by reducing the number
of execution units
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TM: Cohesion criteria

• GOMAA - CODARTS cohesion criteria:
– temporal cohesion (= same priority)

• different actions from the same event
• actions with similar periods (when independent)

– functional sequential cohesion (= no interference)
– control cohesion (= no interference, exclusive

calls)
– Assign priorities according to deadlines.
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Step 3. Task prioritisation

• Rate-monotonic = 
shorter deadline <=> higher priority
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Step 4: Analysis

• Situation table
• Measure processing times, and do RMA

6SHFLILFDWLRQ 'HVLJQ	 7HVW
6\VWHPHYHQW 3HULRG 'HDG�OLQH
(� �� �
(� �� ��



Version 0.1 Ton Kostelijk - Philips Digital 
Systems Labs

66

Step 4: RMA
6LWXDWLRQ�WDEOH

5HTXLUHPHQWV 'HVLJQ�DQG�7HVW
� V\V�HYHQWV
� SHULRG
� GHDGOLQH

� DFWLRQ�IORZ
� H[HFXWLRQ XQLW
� SULRULW\
� �VKDUHG UHVRXUFH�
� SURFHVV WLPH

� UHVSRQVH�WLPH
&DOFXODWHG���������
RU PRUH�VRSKLVWLFDWHG�

FRPSDUHG
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Step 5: Tuning step

• Only when a deadline is not met: 
– either the processor is idle now and then, and you could

benefit more from concurrency:
• redo from cohesion onwards

– or some bursts of context-switches appear
• use more cohesion here, or priority-setting should be changed

– otherwize: speed-up critical processing part (only now)
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Exercise!
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Issues resulting from concurrency

Issues
• Reentrancy
• Synchronisation 
• Shared resources

– Large blocking time
– Deadlocks
– Starvation

Means
Among others
• semaphores
• separate execution unit 

(queue + task)
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Concurrency issue: Semaphores

• Semaphore: OS primitive for controlling 
access.

• Protocol:
– Get access with P(s).
– Perform critical region operations. 
– Release access with V(s).

• In general, initial value of n supports access to a 
resource of n items. 

Choice of size is 
crucial !!
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Concurrency issue: Reentrancy

• Ability of a program or function to execute 
multiple times concurrently.

• This requires separate data  per call.
– Either use local data (I.e., no global data) or 

protect global data as being a shared resource.
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Concurrency issue: Synchronisation

• Use semaphores, with initial value 0. 
– P(): probeer 
– V(): verhoog

• When P(s) is called, it waits until a V(s) has 
happened.
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Concurrency issue: Shared resources

• Example: shared date in memory, devices
• How to implement mutual exclusion:

– disable interrupts (better: partly) or
– disable task switching (even better: partly)
– but what about real-time deadlines?
– even better ...
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Concurrency issue:

Shared resources (2)
• How to implement mutual exclusion (2)

– semaphores
• risk of priority inversion

– ex: small kitchen, bad temper, dishwashing, a fridge
– solution: priority inheritance / priority ceiling protocol

• use extra “blocking time” in addition to processing time 
for the relevant events

• Risk of deadlocks

– thread decoupling: with “job queue” (e.g., I/O )
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Concurrency issue: Shared resources 
(3) deadlocks

• Result of mutual exclusion that contain each 
other. Mutex calls form a cyclic graph.

• Example: F1

F2

Resource 2

Resource 1
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Concurrency issue: Shared resources 
(4) deadlocks prevention

• Exclude a cyclic order:
– Order all modules based on their position in the entire 

system based on usage structure.

• Module of order N is only allowed to synchro-
nously call methods from modules of order <N

• Example:
– ‘down’ calls may be synchronous, but ‘up’ calls must be 

asynchronous (decoupled)
– ‘down-stream calls’ are synchronous, up-stream 

decoupled.
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Concurrency issue: Shared resources 
(5) deadlocks prevention

• Absence of deadlocks is guaranteed because 
semaphores are always passed (locked, ‘P’) in the 
same order, i.e., the order given by the module 
ordering

• Now modules can implement their own (local) 
protection schemes while guaranteeing global 
absence of deadlocks.

• Yes, a specialized task (thread decoupling) works 
as well!

• Critical sections must be kept short.
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Concurrency issue: Priorities: 
starvation

• Actually this is impossible when applying 
RMA with hard deadlines.

• However, an example:
– a monkey sitting on a keyboard
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Conclusion

• Design of execution architecture, by using 
concurrency is a crucial, non-trivial part of 
an architecture.
– Requirements, function to taskmapping, 

analysis. 
– shared resources / synchronisation

• Upper part of the whole dynamic issue of a 
system ... 
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Model: Levels of execution

4. Busses and buffering: data comm.

1. Task and priority assignment

2. Algorithms, source code

3. Machine code, CPU

5. Device access

HW

SW

Execution architecture

Execution architecture

Compiler

HW arch, settings

HW arch, settings


