Execution Architecture for
Real-Time Systems

Dr. A.P. Kostelyjk (Ton)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs



Content

* Discussion on You:
performance issues e Discussion
 Introductory examples

* OS: process

context switch, process- . Vari hedul;
creation, thread, co-operative / arious scneduling

preemptive multi-tasking, exercises
scheduling, EDF, RMS, RMA.

* How to design concur-

rency / multi-tasking * RMA exercise

Version 0.1 Ton Kostelijk - Philips Digital 2
Systems Labs




Discussion on performance 1ssues

SW

HW

Version 0.1 Ton Kostelijk - Philips Digital 3
Systems Labs



Model: Levels of execution

¢ Execution architecture

1. Task and priority assignment
¢ Execution architecture

SW

2. Algorithms, source code
¢ Compiler
3. Machine code, CPU
¢ HW arch, settings

HW | 4. Busses and buffering: data comm.
¢ HW arch, settings

5. Device access

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs




Content

* Discussion on You:
performance issues e Discussion
 Introductory examples

* OS: process

context switch, process- . .
creation, thread, preemptive * Various SCthllllIlg

multi-tasking, scheduling, EDF, exercises
RMS, RMA.

* How to design concur-

rency / multi-tasking * RMA exercise

Version 0.1 Ton Kostelijk - Philips Digital 5
Systems Labs




Example 1: a coffee machine

3 a = place new filter; 1
QO b = add new coftee; |

b ¢ = fill water reservoir; 2
a (= [t ar ) d = heat water and pour; 2

1 C g d "a
main() { a(); b(); c(); d(); } t=6
main() { c(); a(); b(); d(); } t=6
main() { a_i(); c_i(); a_f(); b(); c_f(); d(); } t=4

Systems Labs



Observations

* Timing requirements of actions are determined
by dependency relations and deadlines.
» Hard-coded schedule of actions:

+ Reliable, easy testable
+ For small systems might be the best choice.

Version 0.1 Ton Kostelijk - Philips Digital 7
Systems Labs



Example 2: a TV system

L20 pixels,
50 fields per second
A )
615 Odd field
HH TV signe> Even field
.
v Txt lines 1n vertical blanking

| X | Y1 | Xy
| | | |
—E— T AW

Led flashing Led off Led flashing

X;+y.=1ms

Version 0.1 Ton Kostelijk - Philips Digital 8
Systems Labs



Example 2: a TV system

» Simultaneous TV-system activities, €.g.,
— 1) TXT processing and
— 2) be able to respond to a Remote Cntrl key-press.

 One can include RC command checks 1n the
TXT processing code. Mix unrelated things.

« RC-key press Timing Requirement 1s 0.5 s,
TXT processing Timing Req. 1s 20 ms.

Version 0.1 Ton Kostelijk - Philips Digital 9
Systems Labs



Observations revised

* Timing requirements of actions are determined
by dependency relations and deadlines.

* Interrupts can be used for concurrency.
— The RC-bit level is handled in this way.

 Hard-coded schedule:

— 1t mixes unrelated functionality, and
— lacks extendibility.
— For small systems might be the best choice.

Version 0.1 Ton Kostelijk - Philips Digital 10
Systems Labs



Device - CPU Access

+ Polling 11 cPU
Fach x ms 1
‘check status’; i ///Jif

* Interrupt
— signal: handshake

— forces next instruction
to be a predetermined

routine call

data status
reg reg

Device

mechanism

Version 0.1 Ton Kostelijk - Philips Digital

Systems Labs

11



Operating system, overview

* Supports concurrency, based on the concept
of ‘process’, a virtual processor.

* Supports functions to handle problems
caused by concurrency, €.g., mutual
exclusion for a single-client resource.

« Auxiliary functions, like date/time, file system,
networking, security, etc. etc.

Version 0.1 Ton Kostelijk - Philips Digital 12
Systems Labs



Why multiple processes?

» Ease of programming: Separate programs execute
quasi-parallel on a CPU.

» Handle urgency 1n particular for real-time
activities.

» Utilisation of 1dle time. Continue with other
processing when an activity 1s waiting for external
response.

Version 0.1 Ton Kostelijk - Philips Digital 13
Systems Labs



Processes

* A process 1s a unique execution of a
program or function, managed by the OS.

— Several copies of a program may run
simultaneously or at different times.

* A process has its own state:
— processor status (registers, IR)

— memory

« stack, heap, process-status

Version 0.1 Ton Kostelijk - Philips Digital 14
Systems Labs



Processes and CPUs

e Activation record:
copy of process state. Process 1’s

« Context switch: ActIvationw.,
record :
— current CPU context registers
goes out; Process 2 ’s |-
— new CPU context goes || Activation CPU
1. Record
memory
Version 0.1 Ton Kostelijk - Philips Digital 15

Systems Labs



Threads

* Separate memory spaces per process require
a Memory Management Unit (by using
virtual memory).

* Thread = lightweight process: a process that
shares memory space with other processes.

* Threads versus Processes: a reliability /
safety and cost 1ssue.

Version 0.1 Ton Kostelijk - Philips Digital 16
Systems Labs



Context switching

e Initiation?

* Switch to what other process?

* Answers = Characteristic of Operating
System

— Preemptive multitasking

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

17



Preemptive context switching

* OS saves current process’s state 1n an
activation record.

* OS chooses next process p to run (scheduling).

* OS installs activation record p as current CPU
state, and the next process resumes.

* Do CPU caches improve context switching?

Version 0.1 Ton Kostelijk - Philips Digital 18
Systems Labs



Process state

* A process can be 1n one

of three states:
gets data

and CPU

— executing on the CPU;

_ : preempted
ready to run; needs

data

— blocking / waiting for

data. gets data

* Context switch caused
when other process 1s
made ready, like IPC,
mutex, semaphores, etc.

Version 0.1 Ton Kostelijk - Philips Digital 19
Systems Labs

needs data



OS-call and scheduler

OS-call

l P, Resume P
T OS layer
Qudder =X
Blocked AR, ARy —
Version 0.1 Ton Kostelijk - Philips Digital 20

Systems Labs



Interrupts and scheduler

P, P,

Resume P
OS layer
Resume T Y
Interrupt ler >
Routine Blocked AR, ARy —
AR, AR,
InterruptT T Interrupt with OS-call in Routine
Version 0.1 Ton Kostelijk - Philips Digital 21

Systems Labs



Preemptive multitasking

* Most powerful form of multitasking:
— OS controls when contexts switch; (cause)

— OS determines what process runs next.
e Cause:

— 1nterrupts, €.g., a timer,

— 1nter-process-calls, etc.

— anything that can make a process ready to run

Version 0.1 Ton Kostelijk - Philips Digital 22
Systems Labs



Flow of control with preemption

Timer-tick I XT-slicer interrupt
cause cause
>
time
SW Animation SW Animation TXT processing
Version 0.1 Ton Kostelijk - Philips Digital 23

Systems Labs



Embedded vs. general-purpose
scheduling

* Workstations try to avoid starving processes
of CPU access.

— Fairness = access to CPU.

 Embedded systems must meet deadlines.

— Low-priority processes may not run for a long
time. Risk of starvation.

Version 0.1 Ton Kostelijk - Philips Digital 24
Systems Labs



Priority-driven scheduling

* Each process has a priority.

* CPU goes to highest-priority process that 1s
ready.

* Priorities determine scheduling policy:
— fixed priority;
— time-varying priorities.
— round-robin scheduling 1n case of equal
priorities

Version 0.1 Ton Kostelijk - Philips Digital 25
Systems Labs



Priority-based Tasks

k
) } Interrupt-levels
|
" m
2
g Process / Thread
S 2
g1
Version 0.1 Ton Kostelijk - Philips Digital 26

Systems Labs



Priority-driven scheduling
example

 Rules:

— each process has a fixed priority (3 = highest);

— highest-priority ready process gets CPU;

— process continues until done.

* Processes

P1: priority 3, execution time 10

P2: priority 2, execution time 30

Version 0.1

P3: priority 1, execution time 20

Ton Kostelijk - Philips Digital 27
Systems Labs



Priority-driven scheduling

example

P3 ready t=18
P2 ready t=0 PI1 ready t=15

| ||

| | | | | [
0 10 20 30 40 50 60
time

Version 0.1 Ton Kostelijk - Philips Digital 28
Systems Labs



Simplified model

o Zero context switch time.

* No data dependencies between processes.
* Process execution time 1s constant.

* Deadline 1s at end of period.

» Highest-priority ready process runs.

Version 0.1 Ton Kostelijk - Philips Digital 29
Systems Labs



Earliest-deadline-first scheduling

* EDF: dynamic priority scheduling scheme.

* Process closest to its deadline 1s given
highest priority. In other words: the
deadlines must be available.

* Requires recalculating process-priorities at
every context switch-cause.

Version 0.1 Ton Kostelijk - Philips Digital 30
Systems Labs



Exercise: Earliest Deadline First

Thread Period = deadline | Processing | Load
Thread 1 9 3 33.3 %
Thread 2 15 5
Thread 3 23 5
Suppose at t = 0, all threads are ready to process the
arrived trigger.
0 9 15 18 23
Thread1__3
Thread 2
Thread 3
Version 0.1 Ton Kostelijk - Philips Digital 31

Systems Labs



Answer to exercise: EDF

23

Thread Period = deadline Processing Load
Thread 1 9 3 33.3%
Thread 2 15 5 33.3%
Thread 3 23 5 21.7 %
88.3 %
0 9 15 18
Threadl—_ % #
Thread 2 ]
Thread 3 L _—4
Version 0.1 Ton Kostelijk - Philips Digital

Systems Labs




EDF evaluation

* EDF can utilize 100% of CPU.
* Overhead in context-switching is large.

* Deadlines (not only repetition rates) must
explicitly be available in the system.

» Theoretically attractive, but hardly ever
used.

Version 0.1 Ton Kostelijk - Philips Digital 33
Systems Labs



Rate-Monotonic Scheduling

« RMS: static priority scheduling scheme.

* Priority assignment: the shorter deadline,
the higher the priority.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

34



Exercise: Rate-Monotonic S

Thread Priority Period = deadline | Processing | Load
Thread 1 9 3 33.3 %
Thread 2 15 5 33.3 %
Thread 3 23 5 21.7 %
88.3%

Suppose at t = 0, all threads are ready to process the
arrived trigger.

0 9 15 18 23
Thread_1
Thread 2
Thread 3
Version 0.1 Ton Kostelijk - Philips Digital

Systems Labs



Answer to exercise: RMS (vs EDF)

Thread Priority Period = deadline | Processing | Load
Thread 1 | High 9 3 33.3 %
Thread 2 | Medium 15 5 33.3 %
Thread 3 | Low 23 5 21.7 %
88.3 %

0

Threadl—;

Thread 2

Thread 3

Version 0.1 Ton Kostelijk - Philips Digital

Systems Labs

36



Answer to exercise: RMS (vs EDF)

0 9 15 18 23

Threadl—; % F3

Thread 2 > #———42 -

Thread 3 1 4 .g
1 ﬁ_

0 9 15 18 23

Threadl—; % F3

Thread 2

Thread 3

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs



RMS evaluation

e RMS cannot utilize 100% = 1.0 of CPU,
but for 1,2,3,4 ... o processes:

1.00, 0.83, 0.78, 0.76, ... log 2 = 0.69.
 RMS guarantees that all processes will

always meet their deadlines, for any
interleaving of processes.

» With fixed priorities, context switch
overhead 1s limited.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

38



RMS evaluation (cont’d)

 For specific cases utilization bound higher,
up to 0.88 load for large n.

* A processor running only hard-real-time
processes 1s rare. For soft-RT less a problem.

* A lot of additional theory exists.

— Meeting deadlines in hard-real-time systems, by L.P.
Briand and D.M. Roy.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

39



Real-time scheduling theory,
utilization bound

* Set of n tasks with periods T 1, and process
ttme P 1,loadu 1=P 1/ T 1,

* Schedule 1s at least possible when tasks are
independent and:

1

Load EZ u, <nEn -1

* 1.00, 0.83, 0.78, 0.76, .... IogZ_ = 0.69.

Version 0.1 Ton Kostelijk - Philips Digital 40
Systems Labs



Content

* Discussion on You:
performance issues e Discussion
 Introductory examples

* OS: process

context switch, process- . .
creation, thread, co-operative / * Various SChedUhHg

preemptive multi-tasking, exercises
scheduling, EDF, RMS, RMA.

* How to design concur-

rency / multi-tasking * RMA exercise

Version 0.1 Ton Kostelijk - Philips Digital 41
Systems Labs




How to design concurrency

* Introduction: Why? Grounds?
* Timing requirements

* Active versus passive

« Execution architecture steps

* Issues resulting from concurrency

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

42



Multiple processes?

Why? Why not?
« Ease of programming for
o Handle urgency (meet strongly related functionality
various deadlines — Reduce unpredictability
simultaneously) e Context-switch overhead
 FEase of programming — and inter-process communication

unrelated functionality Memory cost (e.g. multiple
e Utilisation of idle time stacks)

Design of concurrency 1s a crucial,

non-trivial part of an architecture.

Version 0.1 Ton Kostelijk - Philips Digital 43
Systems Labs



Execution architecture design
based on RMA.

Grounds:

* Function to Task mapping based on
Gomaa’s CODARTS rules.

* Scheduling of tasks based on RMS = rate-
monotonic scheduling

* Deadline analysis 1s known as Rate
Monotonic Analysis (RMA).

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

44



Execution architecture:
What are Timing Requirements?

Event / Trigger

Required deadline L " m
Actual response K s 2(
Multiple TRs: System

concurrent responses.

Version 0.1 Ton Kostelijk - Philips Digital 45
Systems Labs



What are Timing Requirements?

* What happens 1f a process doesn’t finish by
1ts timing requirement?
— Hard deadline: system fails 1f missed.

— Soft deadline: user may notice, but system
doesn’t necessarily fail.

— Periodic events: cyclic.

— Aperiod events, e.g. user-input.

Version 0.1 Ton Kostelijk - Philips Digital 46
Systems Labs



What are timing requirements?

* Event
— external: signal: e.g. device or timer
— active or passive = interrupt or polling
— internal: handover some datastructure

— Dependency tree of actions = action flow

3
[ ]
/\
@ > >®
1 C 2 d 4

Version 0.1 Ton Kostelijk - Philips Digital 47
Systems Labs



Terminology

» Action = response function.

 Task 1s a virtual processor, executing a set
of actions.

— A process or thread 1s a sequential execution of
a set of response functions, managed by the OS.

— An interrupt routine 1s a function that may be
triggered by an interrupt. Each interrupt-level
can be regarded as a task, executing a set of

interrupt routines.
Version 0.1 Ton Kostelijk - Philips Digital 48
Systems Labs



Priority-based Tasks

k
) } Interrupt-levels
|
" m
2
g Process / Thread
S 2
g1
Version 0.1 Ton Kostelijk - Philips Digital 49

Systems Labs



Notation

)/

Encapsulation Thread

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

Queue

50



Passive versus Active

/T1 kcall S FT
j /A
body OJ
3 Object O1

-8

Objects / modules communicate via (member)

functions

A passive module runs it’'s functions on the task
of a caller. The function is synchronous.

Version 0.1 Ton Kostelijk - Philips Digital 51
Systems Labs



Passive versus Active
Exec.Unit U

/ T1 redire g Q
ha\ \a” F

NE /},2///
< Object Ol

Active objects / functions defer execution to another task.
The function is asynchronous, or decoupled.

Version 0.1 Ton Kostelijk - Philips Digital 52
Systems Labs



Redirection

* Redirection data:
— function pointer,
— function arguments,

— execution unit 1d.

* Can be generalized to
a pattern to support
simple change.

* Decouple functional
and dynamical design.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

53



Overview of exec arch steps

and their timing requirements.

v

2. Action to task mapping

v

» 3. Task prioritisation

v
4. Measurement & RM Analysis

5. Tuning 4—4 ;P Let's Party

Version 0.1 Ton Kostelijk - Philips Digital 54
Systems Labs

/' 1. Get an overview of all triggers, actions




Step 1: Inventorize triggers,
actions and timing requirements

Video
Satellite signal Audi
. Set Top Box udio
LNB control
4—
PC connection
User Input { J User Indication I Smartcard

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs



Set Top Box

Characters (serial)

< » PC Controlled by
communicatio Resident
: ) Storage
—5[q User 1 Resident
: ave ser Input .
User Input Storage&Retrieval |¢
p CPU | i r / po— — [EEPROM|
< L Aléphc;atllon Time
: User ontro . Trigger
+— . Timer
e : Indications Control HW clock
Indications
- EMMs
P ntitlements
< Content
Smartcard Presentation
LNB cotrol -
Service Info
Graphics
LNB . .
Audio/Video
Tuner band — backend
SI Synchronisation
LNB EQMs /
on dish EMMs PES Stream
TS stagis (serial)
: Teletext
Satellite Sections
signal Tuxer band 1
sections F’ES Stream
TS selection » TS decoding & > Audlo/Vlde »Video + OSD
: TransportStream  |descrambling Audio/Video o decoding mixing
PES Stream

AN o TV

v



This 1s too complex ! ?

Yes, we have a problem and 1t’s complex

[t’s a matter of
— beginning and

— simplification

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

57



3 dimensions of simplification

» Highest priorities are independent of others.

— do interrupt domain first. Reapply highest priority
simplification in case 1t’s still difficult.

e Select critical scenario’s
— foraTV: 1) play, 2) zap.

* Simp.

1ty by taking worst-case estimates. When

it analyses to ‘trouble’, either you can relax in a

morce

Version 0.1

precise model, or you are 1n trouble.

Ton Kostelijk - Philips Digital 58
Systems Labs



Step 2: Action to Task mapping

Action set = Exec. Exec.

_ Params P Units U
Function set

Version 0.1 Ton Kostelijk - Philips Digital 59
Systems Labs



Action to Task Mapping

 1: Task Structuring: Identify potential active
functions / modules.

o 2: Task Cohesion: Some may share a task.

e (Criteria: see next sheet.

« Example:
— 1) SettopBox: 80 -> 20
—2)TV:150 > 6

Version 0.1 Ton Kostelijk - Philips Digital 60
Systems Labs



TM: Structuring criteria: active

 GOMAA - CODARTS structuring criteria:
— asynchronous device 1/0
— resource monitors
— periodic functions
— control (object following a state-transition
diagram)

— user role (“sequential application™)

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

61



TM: Cohesion step

* Characteristics:
— also known as ‘task-merging’
— global scope (architect)

— consider mapping of active objects on the same
execution unit (task)

— aim: reduce task-switching overhead and
memory requirements by reducing the number
of execution units

Version 0.1 Ton Kostelijk - Philips Digital 62
Systems Labs



TM: Cohesion criteria

« GOMAA - CODARTS cohesion criteria:

— temporal cohesion (= same priority)
« different actions from the same event

* actions with similar periods (when independent)
— functional Sequential cohesion (= no interference)

— control cohesion (= no interference, exclusive
calls)

— Assign priorities according to deadlines.

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

63



Step 3. Task prioritisation

e Rate-monotonic =

shorter deadline <=> higher priority

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

64



Step 4: Analysis

Specification Design
& Test
System| Period | Dead-
event line
E1 20 5
E2 15 10

 Situation table
* Measure processing times, and do RMA

Version 0.1 Ton Kostelijk - Philips Digital 65
Systems Labs



Step 4: RMA

Situation table

Requirements

Design and Test

* Sys events « action flow
* period « execution unit
 deadline * priority
* (shared resource)
* process time
A & Calculated (< 70%,
or more sophisticated)
* response time
compared "

Version 0.1

Ton Kostelijk - Philips Digital
Systems Labs

66



Step 5: Tuning step

* Only when a deadline 1s not met:

— either the processor is 1dle now and then, and you could
benefit more from concurrency:

* redo from cohesion onwards

— or some bursts of context-switches appear

 use more cohesion here, or priority-setting should be changed

— otherwize: speed-up critical processing part (only now)

Version 0.1 Ton Kostelijk - Philips Digital 67
Systems Labs



Version 0.1

Exercise!

Ton Kostelijk - Philips Digital
Systems Labs

68



Issues resulting from concurrency

Issues Means
* Reentrancy Among others
* Synchronisation * semaphores
« Shared resources e separate execution unit
— Large blocking time (queue + task)
— Deadlocks
— Starvation

Version 0.1 Ton Kostelijk - Philips Digital 69
Systems Labs



Concurrency 1ssue: Semaphores

* Semaphore: OS primitive for controlling
access.

* Protocol: Choice of size is j
— Get access with P(s). crucial !!

— Perform critical region operations.

— Release access with V(s).

 In general, mitial value of n supports access to a
resource of n items.

Version 0.1 Ton Kostelijk - Philips Digital 70
Systems Labs



Concurrency issue: Reentrancy

* Ability of a program or function to execute
multiple times concurrently.
» This requires separate data per call.

— Either use local data (I.e., no global data) or
protect global data as being a shared resource.

Version 0.1 Ton Kostelijk - Philips Digital 71
Systems Labs



Concurrency issue: Synchronisation

» Use semaphores, with initial value 0.
— P(): probeer
— V(): verhoog

 When P(s) is called, it waits until a V(s) has
happened.

Version 0.1 Ton Kostelijk - Philips Digital 72
Systems Labs



Concurrency issue: Shared resources

« Example: shared date in memory, devices

 How to implement mutual exclusion:
— disable interrupts (better: partly) or
— disable task switching (even better: partly)
— but what about real-time deadlines?

— even better ...

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

73



Concurrency 1ssue:

Shared resources (2)

 How to implement mutual exclusion (2)

— semaphores
e risk of priority inversion
— ex: small kitchen, bad temper, dishwashing, a fridge
— solution: priority inheritance / priority ceiling protocol

e use extra “blocking time” in addition to processing time
for the relevant events

 Risk of deadlocks
— thread decoupling: with “job queue” (e.g., 1/0)

Version 0.1 Ton Kostelijk - Philips Digital 74
Systems Labs



Concurrency 1ssue: Shared resources
(3) deadlocks

 Result of mutual exclusion that contain each
other. Mutex calls form a cyclic graph.

« Example:

Version 0.1 Ton Kostelijk - Philips Digital 75
Systems Labs



Concurrency issue: Shared resources
(4) deadlocks prevention

* Exclude a cyclic order:
— Order all modules based on their position 1n the entire
system based on usage structure.
* Module of order N 1s only allowed to synchro-
nously call methods from modules of order <N

« Example:

— ‘down’ calls may be synchronous, but ‘up’ calls must be
asynchronous (decoupled)

— ‘down-stream calls’ are synchronous, up-stream
decoupled.

Version 0.1 Ton Kostelijk - Philips Digital 76
Systems Labs



Concurrency issue: Shared resources
(5) deadlocks prevention

» Absence of deadlocks 1s guaranteed because
semaphores are always passed (locked, ‘P’) in the
same order, 1.€., the order given by the module
ordering

 Now modules can implement their own (local)
protection schemes while guaranteeing global
absence of deadlocks.

* Yes, a specialized task (thread decoupling) works
as well!

 Critical sections must be kept short.
Version 0.1 Ton Kostelijk - Philips Digital 77
Systems Labs



Concurrency issue: Priorities:
starvation

* Actually this 1s impossible when applying
RMA with hard deadlines.

 However, an example:

— a monkey sitting on a keyboard

Version 0.1 Ton Kostelijk - Philips Digital
Systems Labs

78



Conclusion

* Design of execution architecture, by using
concurrency 1s a crucial, non-trivial part of
an architecture.

— Requirements, function to taskmapping,
analysis.

— shared resources / synchronisation

» Upper part of the whole dynamic 1ssue of a
system ...

Version 0.1 Ton Kostelijk - Philips Digital 79
Systems Labs



Model: Levels of execution

SW

HW

Version 0.1

¢ Execution architecture

1. Task and priority assignment

¢ Execution architecture

2. Algorithms, source code

¢ Compiler

3. Machine code, CPU

¢ HW arch, settings

4. Busses and buffering: data comm.

¢ HW arch, settings

5. Device access

Ton Kostelijk - Philips Digital
Systems Labs

80



