
The conceptual view
-

storage

acquisition

processing
compress

encoding

display

processing

de-

compress decoding
display

acquisition

Gerrit Muller
University of Southeast Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The purpose of the conceptual view is described. A number of methods or models
is given to use in this view: construction decomposition, functional decomposition,
class or object decomposition, other decompositions (power, resources, recycling,
maintenance, project management, cost, ...), and related models (performance,
behavior, cost, ...); allocation, dependency structure; identify the infrastructure
(factoring out shareable implementations), classify the technology in core, key
and base technology; integrating concepts (start up, shutdown, safety, exception
handling, persistency, resource management,...).

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.7 status: preliminary draft June 5, 2018

1 Introduction

The conceptual view is used to understand how the product is achieving the speci-
fication. The methods and models used in the conceptual view should discuss the
how of the product in conceptual terms. The lifetime of the concepts is longer than
the specific implementation described in the Realization view. The conceptual view
is more stable and reusable than the realization view.

The dominant principle in design is decomposition, often immediately coupled
to interface management of the interfaces of the resulting components. It is important
to realize that any system can be decomposed in many relevant ways. The most
common ones are discussed here briefly: construction decomposition, section 2,
functional decomposition, section 3, class or object decomposition, other decom-
positions (power, resources, recycling, maintenance, project management, cost,
execution architecture...), and related models (performance, behavior, cost, ...).

If multiple decompositions are used then the relationships between decompo-
sitions are important. One of the methods to work with these relationships is via
allocation. Within a decomposition and between decompositions the dependency
structure is important.

From development management point of view it is useful to identify the infras-
tructure (factoring out shareable implementations), and to classify the technology
in core, key and base technology.

The complement of decomposition is integration. Articulating the integrating
concepts (start up, shutdown, safety, exception handling, persistency, resource
management,...) provides guidance to the developers and helps to get a consis-
tently behaving system.

2 Construction decomposition

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view PIP

browseviewport menu

adjust
view

TXT

hardware

driver

applications

services

toolboxes

domain specific generic

signal processing subsystem control subsystem

Figure 1: Example of a construction decomposition of a simple TV

The construction decomposition views the system from the construction point
of view, see figure 1 for an example and figure 2 for the characterization of the
construction decomposition.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 1

The construction decomposition is mostly used for the design management. It
defines units of design, as these are created and stored in repositories and later
updated. The atomic units are aggregated in compound design units, which are
used as unit for testing and release and this often coincides with organizational
ownership and responsibility.

management of design

file

box

IP core

IC

unit of aggregation for

organisation

test

release

unit of

creation

storage

update

SW example

package

module

PCB

IP cells

IP core

HW example

Figure 2: Characterization of the construction decomposition

In hardware this is quite often a very natural decomposition, for instance in
cabinets, racks, boards and finally IC’s, IP cores and cells. The components in the
hardware components are very tangible. The relationship with a number of other
decompositions is reasonably one to one, for instance with the work breakdown for
project management purposes.

The construction decomposition in software is more ambiguous. The structure
of the code repository and the supporting build environment comes close to the
hardware equivalent. Here files and packages are the aggregating construction
levels. This decomposition is less tangible than the hardware decomposition and
the relationship with other decompositions is sometimes more complex.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 2

3 Functional decomposition

The functions as described in the functional view have to be performed by the
design. These functions often are an aggregation of more elementary functions in
the design. The functional decomposition decomposes end user functions in more
elementary functions.

Be aware of the fact that the word function in system design is heavily overloaded.
It does not help to define sharp boundaries with respect to the functional decom-
position. Main criterium for a good functional decomposition is its useability for
design. A functional decomposition provides insight how the system will accom-
plish its job.

storage

acquisition

processing
compress

encoding

display

processing

de-

compress decoding
display

acquisition

Figure 3: Example functional decomposition camera type device

Figure 3 shows an example of (part of) a functional decomposition for a camera
type device. It shows communication, processing and storage functions and their
relations. This functional decomposition is not addressing the control aspects,
which might be designed by means of a second functional decomposition, but from
control point of view.

How;

what is the flow of internal activities

to realise external functionality?

some keywords:

activities

transformation

input output

data flow

control flow

multiple functional decompositions

are possible and valuable!

Figure 4: Characterization of the functional decomposition

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 3

4 Designing with multiple decompositions

The design of complex systems always requires multiple decompositions, for instance
a construction and a functional decomposition. Many designers in the design team
need support to cope with this multiplicity.

Most designers don’t anticipate cross system design issues, for instance when
asked in preparation of design team meetings. This limited anticipation is caused
by the locality of the viewpoint, implicitly chosen by the designers.

memory usage

export

server

print

server

database

server

SNR

accuracy

latency

processing

brightness

next

play movie

render film

query DB What is the memory usage of

the user interface

when querying the DB

import

server

user

interface

fu
n
ct
io
n
s

component

ch
ar
ac
te
ris
tic
s

when performing <function>?

of the <component>

How about the <characteristic>

Figure 5: Question generator for multiple decompositions

Figure 5 shows a method to help designers to find system design issues. A three
dimensional space is shown. Two dimensions are the decomposition dimension
(component and functional), the last dimension is the design characteristic dimension.

For every point in this 3D space a question can be generated in the following
way:
How about the <characteristic> of the <component> when performing <function>?
Which will result in questions like:
How about the memory usage of the user interface when querying the database?

The designers will not be able to answer most of these questions. Simply
asking these questions helps the designer to change the viewpoint and discover
many potential issues. Luckily most of the not answered questions will not be
relevant. The answer to the memory usage question above might be insignificant
or small.

The architect has to apply a priori know how to select the most relevant questions
in the 3D space. Figure 6 shows a set of selection factors that can be used to
determine the most relevant questions.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 4

Critical for system performance

Risk planning wise

Least robust part of the design

Suspect part of the design

- experience based

- person based

Figure 6: Selection factors to improve the question generator

Critical for system performance Every question that is directly related to critical
aspects of the system performance is relevant. For example What is the CPU
load of the motion compensation function in the streaming subsystem? will
be relevant for resource constrained systems.

Risk planning wise Questions regarding critical planning issues are also relevant.
For example Will all concurrent streaming operations fit within the designed
resources? will greatly influence the planning if resources have to be added.

Least robust part of the design Some parts of the design are known to be rather
sensitive, for instance the priority settings of threads. Satisfactory answers
should be available, where a satisfactory answer might also be we scheduled
a priority tuning phase, with the following approach.

Suspect part of the design Other parts of the design might be suspect for several
reasons. For instance experience learns that response times and throughput
do not get the required attention of software designers (experience based
suspicion). Or for instance we allocated an engineer to the job with insuffi-
cient competence (person based suspicion).

Figure 7 shows another potential optimization, to address a line or a plane in the
multi dimensional space. The figure shows an example of a memory budget for the
system, which is addressing all memory aspects for both functions and components
in one budget. The other example is the design specification of a database query,
where the design addresses the allocation to components as well as all relevant
design characteristics.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 5

component

memory usage

export

server

print

server

database

server

SNR

accuracy

latency

processing

brightness

next

play movie

render film

query DB

memory budget plane

import

server

user

interface

fu
n

ct
io

n
s

ch
ar

ac
te

ris
tic

s

query DB

design spec

Figure 7: Addressing lines or planes at once in the multiple dimensions

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 6

5 Internal Information Model

The information model as seen from the outside from the system, part of the
functional view, is extended into an internal information model. The internal infor-
mation model is extended with design choices, for instance derived data infor-
mation is cached to achieve the desired performance. The internal data model
might also be chosen to be more generic (for reasons of future extendibility), or
less generic (where program code is used to translate the specific internal models
in the desired external models.

patient

examination

scan

2D images

3D volume

attributes

scan procedures

exam procedures

attributes

attributes

attributes

attributes

work-list
attributes

volume index

image index

pictorial index precompiled

data elements additional

to the external information

model

Figure 8: Example of a partial internal information model

The internal information model is an important means to decouple parts of the
design. The functional behavior of the system is predictable as long as components
in the system adhere to the internal information model.

Figure 8 shows an example of a part of an information model. In this example
several information elements which are derived from the primary data are stored
explicitly to improve the response time. The pictorial index, existing of reduced
size images, is an example of derived information, which takes some time to
calculate. This index is build in the background during import, so that the navigation
can use it, which makes the navigation very responsive.

All considerations described in section ??, such as the layering hold also for
the internal information model.

6 Execution architecture

The execution architecture is the run time architecture of a system. The process
decomposition plays an important role in the execution architecture. Figure 9
shows an example of a process decomposition.

One of the main concerns for process decomposition is concurrency: which
concurrent activities are needed or running, how to synchronize these activities. A

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 7

image handlingscan control

scan

control

acq

control

recon

control

xDAS recon

db

control

disk

scan

UI

image handling

UI

archiving

control

media

import

export

network

display

control

display device hardware

server

process

UI process

legend

Figure 9: Example process decomposition

process or a task of an operating system is a concept which supports asynchronous
functionality as well as separation of concerns by providing process specific resources,
such as memory. A thread is a lighter construction providing support for asynchronous
activities, without the separation of concerns.

other architecture

views

execution

architecture

functional

model

process

display

receive demux

store

Map

process

task

threadthreadthread

process

task

threadthreadthread

process

task
threadthreadthread

interrupt

handlersin
pu
t

hardware

tuner drive

CPU DSP RAM

in
pu
t

repository

structure

queue

DCTmenu

txt

tuner

foundation

classes

hardware

abstraction

list DVD drive

UI toolkit processing

Applications
play zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Figure 10: Execution architecture

The execution architecture must map the functional decomposition on the process
decomposition, taking into account the construction decomposition. In practice
many building blocks from the construction decomposition are used in multiple
functions mapped on multiple processes. These shared building blocks are aggre-
gated in shared (or dynamic link) libraries. Sharing is advantageous from memory

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 8

consumption point of view, some attention is required for the configuration management
side1.

Figure 10 shows the role of the execution architecture. The main inputs are the
real time and performance requirements at the one hand and the hardware design
at the other hand. The functions need to be mapped on processes, threads and
interrupt handlers, synchronization method and granularity need to be defined and
the scheduling behavior (for instance priority based, which requires priorities to be
defined).

1The dll-hell is not an windows-only problem. Multiple pieces of software sharing the same
library can easily lead to version problems, module 1 requires version 1.13, while module 2 requires
version 2.11. Despite all compatibility claims it often does not work.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 9

7 Performance

The performance of a system can be modeled by complementing models. In
figure 11 the performance is modelled by a flow model at the top and an analytical
model below. The analytical model is entirely parameterized, making it a generic
model which describes the performance ratio over the full potential range.

trecon =

nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcol-overhead

tcorrections(nx ,ny)

trow-overhead

tcontrol-overhead

+

) +

) +

Figure 11: Performance Model

Later in the realization view it will be shown that this model is too simplistic,
because it focuses too much on the processing and does not take the overheads
sufficiently in account.

8 Safety, Reliability and Security concepts

The qualities safety, reliability and security share a number of concepts, such as:

• containment (limit failure consequences to well defined scope)

• graceful degradation (system parts not affected by failure continue operation)

• dead man switch (human activity required for operation)

• interlock (operation only if hardware conditions are fulfilled)

• detection and tracing of failures

• black box (log) for post mortem analysis

• redundancy

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 10

A common guideline in applying any of these concepts is that the more critical
a function is, the higher the understandability should be, or in other words the
simpler the applied concepts should be. Many elementary safety functions are
implemented in hardware, avoiding large stacks of complex software.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 11

9 Start up and shutdown

In practice insufficient attention is paid to the start up and shutdown of a system,
since these are relatively exceptional operations. However the design of this aspect
has an impact on nearly all components and functions in the system. It is really an
integrating concept. The trend is that these operations become even more entangled
with the normal run-time functionality, for instance by run-time downloading,
stand-by and other power saving functionality.

discover kernel HW

initialise kernel data structures

determine next layer

load and initialise loader

determine loading HW

determine next layer

bring in initial state

load and initialise firmware

configure services

allocate resources

load, initialise and start services

configure UI

allocate resources

load, initialise and start UI

detect external services

publish internal services

connect where needed

load

configure

initialise, start

power

boot-loader

HW

kernel

services

user interface

connect to outside

application

stop in safe sequence

flush ongoing activities

close connections

save persistent data

free resources

stop

start up

HW SW interface

shut down

Figure 12: Simplified start up sequence

Figure 12 shows a typical start up shutdown pattern. The system is brought
step by step to higher operational levels. Higher levels benefit from more available
support functions, lower levels are less dependent on support functions.

One of the considerations in the design of this system aspect is the impact of
failures. The right granularity of operational levels enable coping with exceptions
(for example network not available). For shutdown the main question is how power
failures or glitches are handled.

10 Work breakdown

Project leaders expect a work breakdown to be made by the architect. In fact a
work breakdown is again another decomposition, with a more organizational point
of view. The work in the different work packages should be cohesive internally,
and should have low coupling with other work-packages.

Figure 13 shows an example of a work breakdown. The entire project is broken
down in a hierarchical fashion: project, segment, work-package. In this example
color coding is applied to show the technology involved and to show development

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 12

work packagesproject organization

TIP:NBE

R1

xDAS
reconstruction

hardware

viewing

database

scanning

xFEC

run time

acq

prepa-

ration

conver-

sion

algo-

rithms

UIgfx
algo-

rithms
VDU console

import

export
archive

bulk

data
clinical

database

engine

computing

system

host OS
foundation

classes

start up

shutdown

exception

handling

integra-

tion
SPS

SD

S
TPS

alfa

test

beta

test

conf

man

make SW

make HW

buy SW

buy HW

system

segment

project

legend

Figure 13: Example work breakdown

work or purchasing work. Both types of work require domain know how, but
different skills to do the job.

Core

Key

Base

make outsource buy refer customer
to 3rd party

Own value
IP

Critical for final
performance

Commodity

Technology life cycle

Partnering

Total Product

Figure 14: Core, Key or Base technology

Make versus Buy is a limited subset of an entire spectrum of approaches.
The decision how to obtain the needed technology should be based on where the
company intents to add value. A simple reference model to help in making these
decisions is based on core, key, and base technology, see figure 14.

Core technology is technology where the company is adding value. In order to
be able to add value, this technology should be developed by the company
itself.

Key technology is technology which is critical for the final system performance. If
the system performance can not be reached by means of third party technology

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 13

than the company must develop it themselves. Otherwise outsourcing or
buying is attractive, in order to focus as much as possible on core technology
added value. However when outsourcing or buying an intimate partnership
is recommended to ensure the proper performance level.

Base technology is technology which is available on the market and where the
development is driven by other systems or applications. Care should be taken
that these external developments can be followed. Own developments here
are de-focusing the attention from the company’s core technology.

existing base system

new HW subsystem

SW dev system

test HW subsystem

test SW for new HW
subsystem

new application

existing base system

integrate
subsystem

SW dev system test and refine application

integrate and refine
application

adopt existing base SW

new base system test new base system
integrate HW

system

integrate

system

SW for new HW
subsystem

adopt existing
base SW

existing new

2 partial

systems for

SW testing

2 existing

base

systems

new base

systems

time

integrated

system

application integration

new subsystem

integration

Figure 15: Example integration plan, with 3 tiers of development models

Schedules, work breakdown and many technical decompositions are heavily
influenced by the integration plan. Integration is time, effort and risk determining
part of the entire product creation process. The integration viewpoint must be used
regular because of its time, effort and risk impact.

Figure15 shows an example integration plan. This plan is centered around 3
tiers of development vehicles:

• SW development systems

• existing HW system

• new HW system

The SW development system, existing from standard clients and servers, is very
flexible and accessible from software point of view, but far from realistic from
hardware point of view. The existing and new HW systems are much less acces-
sible and more rigid, but close to the final product reality. The new HW system will
be available late and hides many risks and uncertainties. The overall strategy is to
move for software development from an accessible system to a stable HW system
to the more real final system. In general integration plans try to avoid stacking

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 14

too many uncertainties by looking for ways to test new modules in a stable known
environment, before confronting new modules with each other.

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 15

11 Acknowledgements

Constructive remarks from Peter Bingley, Peter van den Hamer, Ton Kostelijk,
William van der Sterren and Berry van der Wijst have been integrated in this
document.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 0.7, date: September 18, 2003 changed by: Gerrit Muller

• corrected copy/paste artefact in ”Introduction”
Version: 0.6, date: September 9, 2003 changed by: Gerrit Muller

• updated text of Section ”Start up and shutdown” about the frequency of occurance
Version: 0.5, date: May 6, 2003 changed by: Gerrit Muller

• added text to section ”internal information model”
• added text to section ”Start up and shutdown”
• changed status to preliminary draft

Version: 0.4, date: October 3, 2002 changed by: Gerrit Muller
• added integration plan including descriptive text

Version: 0.3, date: October 1, 2002 changed by: Gerrit Muller
• added text to construction decomposition
• added figure construction decomposition characterization
• added figure functional decomposition characterization
• added information model
• section acknowledgements added

Version: 0.2, date: September 3, 2002 changed by: Gerrit Muller
• added section Safety, reliability and security concepts
• added simplified start up diagram
• added work breakdown and text
• added core key base diagram and text
• added performance model
• added execution architecture diagram and text
• added example process decomposition

Version: 0.1, date: July 9 2002 changed by: Gerrit Muller
• updated figure Functional decomposition

Version: 0, date: April 2. 2002 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
The conceptual view
June 5, 2018 version: 0.7

University of Southeast Norway-NISE

page: 16

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

	Introduction
	Construction decomposition
	Functional decomposition
	Designing with multiple decompositions
	Internal Information Model
	Execution architecture
	Performance
	Safety, Reliability and Security concepts
	Start up and shutdown
	Work breakdown
	Acknowledgements

