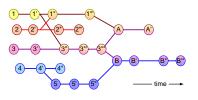
Concept Selection, Set Based Design and Late Decision Making

by Gerrit Muller University of South-Eastern Norway-NISE

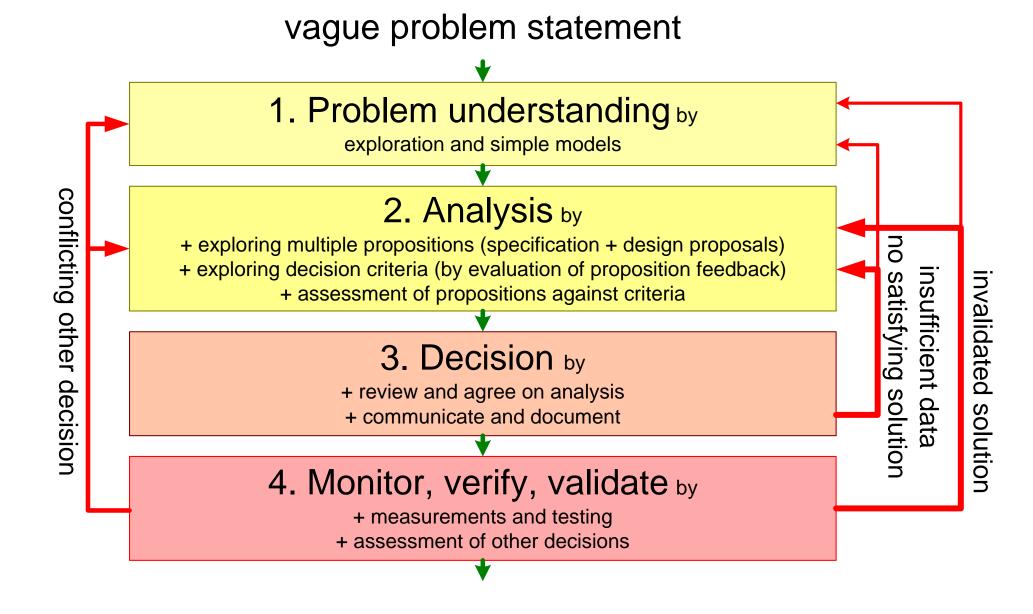
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

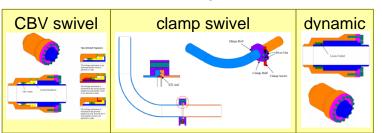

We discuss a systems design approach where several design options are maintained concurrently. In LEAN Product Development this is called set-based design. Concentioanl systems engineering also promotes the concurrent evaluation of multiple concepts, the so-called concept selection. Finally, LEAN product development advocates to keep options open as long as feasible; the so-called late decision making.

Distribution

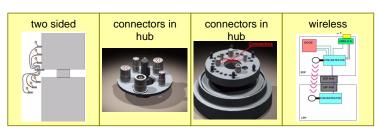

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

September 9, 2018 status: planned

version: 0


Problem Solving Approach

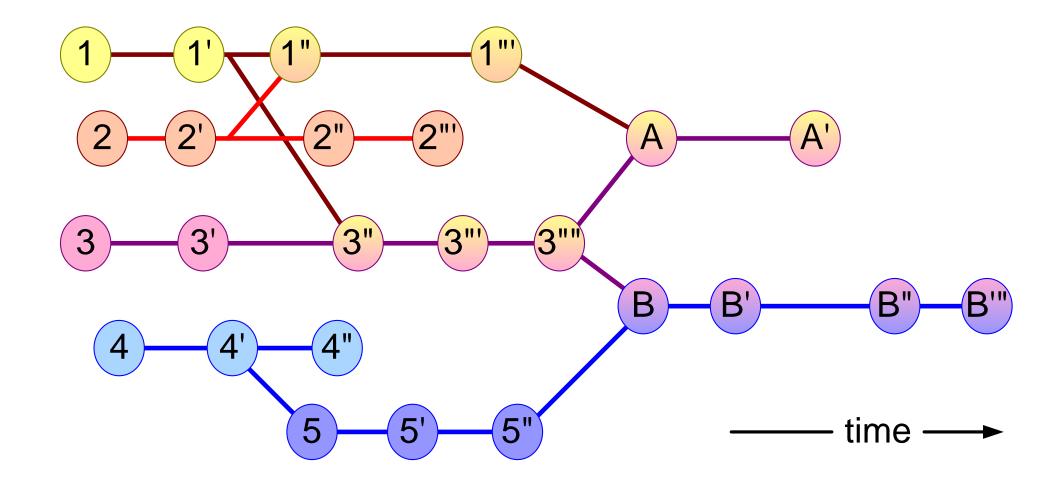
Examples of Pugh Matrix Application


Swivel concept selection

evaluation criteria	weight	CBV		clamp		dynamic	
Maturity Development level	10	5	50	2	20	2	50
Cost Hardware cost Development cost	20	4 5	80 100	2	40 40	5 2	100 40
Design robustness Design life swivel cycles pressure cycles Pressure range internal external Temperature range	25	5 5 4 2 4	125 125 100 50 100	3 4 4 5 4	75 100 100 125 100	3 5 4 2 4	75 125 100 50 100
Installation Initial installatio/retrieva Connection/disconnecti		2	40 40	3 4	60 80	4 5	80 100
Operation Swivel resistance Spool Length Short Spool Length Long Hub loads	25	1 1 3 2	25 25 75 50	4 4 5 4	100 100 125 100	5 5 5 5	125 125 125 125
∑ points			985	1165 1		290	

from master paper Halvard Bjørnsen, 2009

EDP-LRP connection



		Concepts			
Evaluation Criteria	Score	1	2	3	4
Time to connect					
Need for ROV		-	+	+	+
Design		-	+	+	+
Robustness					
Connector design		-	S	S	+
Number of parts		-	-	+	+
Handle roll-off		+	-	S	+
Influence other		+	S	-	S
Redundancy Design			_		s
Interchangeability		+	-	_	-
Cost		т			
HW cost		_	_	_	-
Manufacturing cost		S	S	-	S
Engineering cost		+	-	S	-
Service cost		-	+	+	+
Maturity		-	-	S	+
	Σ-	7	7	5	3
	Σ- Σs Σ+	1	3	4	3
	Σ+	5	3	4	7
	Pos.	3	4	2	1

from master paper Dag Jostein Klever, 2009

Evolution of Design Options

Conclusions

Evolving multiple concepts increases insight and understanding (LEAN product development: set-based design, SE: Pugh matrix)

Articulation of criteria sharpens evaluation

The discussion about the Pugh matrix is more valuable than final bottomline summation

Delaying decisions may help to keep options (Lean Product Development: late decision making, finance: real options)

