
Exploration of the bloating of software
-

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

overhead

value

legend

system

engineering

software

engineering

aggressive

refactoring

incremental

approach

agile

attitude

right

technology

early feedback

system

design

CAFCR

iteration

extensive

regression tests retirement

policy

software

design

Gerrit Muller
Buskerud University College

Frogs vei 41 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Present-day products contain one order of magnitude more software code than is
actually needed. The causes of this bloating are explored. If we are able to reduce
the bloating significantly, then the product creation process is simplified tremen-
dously. Potential handles to attack the bloating are discussed.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.2 status: finished October 3, 2016

1 Introduction

Bloating is one of the main causes of the software crisis. Bloating is the unnec-
essary growth of code. The really needed amount of code to solve a problem is
often an order of magnitude less than the actual solution is using. Most SW based
products contain an order of magnitude more software than is required. The cause
of this excessive amount of software is explored in section 2 and 3.

The overall aspects of bloating are devastating: increased development, test
and maintenance costs, degraded performance, increased hardware costs, loss of
overview, et cetera.

2 Module level bloating

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Figure 1: Exploring bloating

Figure 1 shows a number of causes for bloating. The specification of what need
to be made is often wrong: too much functionality, wrong functionality, personal
hobbyhorses, repair for previous poor specifications, et cetera. The main cause is
insufficient understanding of the application, the customer needs and concerns, in
other words insufficient understanding of the why behind the specification.

The design is the next source of bloating: ineffective design choices increase
the code size. For example dynamic allocation is used, where the context allows
for static allocation (dynamic uncertainty is added and need to be coped with,
without adding value) or static allocation is used in a dynamic context (which
results in dynamics to be added in an unnatural way, benefits of statics are not
harvested, while a lot of complexity is added to cope with the dynamics). Insuffi-
cient design causes also a lot of bloating, for instance lots of duplicated function-
ality. Generic core functionality should have been factored out during design (but
read the remarks about generic solutions below, factoring out requires know-how
and skills).

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 1

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Figure 2: Necessary functionality is more than the intended regular function

Note that the core functionality in the center is all the required functionality
to obtain a well behaved product. This means that it includes much more than the
regular functionality, as shown in figure 2. This includes the boundary behavior
(worst case situations, exceptions), instrumentation for development (tracing, debugging
support, assertions, et cetera) and testing functionality. Note that all causes of
bloating result in bloating of all these categories of regular functionality.

The drive towards generic solutions is often counterproductive. Figure 3 shows
an actual example of part of the Medical Imaging system [7], which used a platform
based reuse strategy. The reuse vision create a significant counterproductive drive
towards generic solutions.

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Figure 3: The danger of being generic: bloating

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 2

The first implementation of a ”Tool” class was over-generic. It contained lots
of if-then-else, configuration options, stubs for application specific extensions, and
lots of best guess defaults. As a consequence the client code based on this generic
class contained lots of configuration settings and overrides of predefined functions.

The programmers were challenged to write the same functionality specific,
which resulted in significantly less code. In the 3 specific instances of this function-
ality the shared functionality became visible. This shared functionality was factored
out, decreasing maintenance and supporting new applications.

The next source of added overhead is caused by the dogmatic application of
architecture rules. For instance the rule that components always communicate via
COM. Such a rule might be very applicable for coarse grain components, but can
ruin a fine grain design.

The last item which increases the code size is the accumulation of unused code.
This happens slowly. In first instance the team is not aware of the fact that part of
the functionality is not used anymore. Much later nobody knows what the effect
will be if the unused code is removed. The motto becomes ”if it ain’t broke, don’t
fix”, which results in an ever growing legacy of dead code.

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 3

3 Bloating causes more bloating

The bloating starts at low level. Via copy/paste modify existing bloating is propa-
gated to new parts of the system. Figure 4 shows what happens with low level
copy paste activities. An existing module is reused via copy-paste. The bad parts
of the code are copied as well, which means that we now have the bad code twice
in the repository. The new module has to do perform some new functionality,
which means that new code, with its own bloating problems, is added. However
in the copied code some unused code is not removed, while the bad code causes
problems. These problems are solved by work-arounds.

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Figure 4: Shit propagation via copy paste

All together the new module is much worse bloated than the old module: shit
propagation and amplification.

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Figure 5: Example of shit propagation

An example of such shit propagation is shown in figure 5. An original module,
with a locally embedded dynamic array pattern is copied in a new class. The
original capacity doubling strategy is replaced by an incremental increase of the
array. The original way of working with a size and a capacity has become obsolete,
but it is not removed. The result is that the new class contains useless code, as well
as uses more run time resources than strictly needed.

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 4

This poor implementation is itself again copied. Some new functionality is
added, in this example a block insert. The block insert is implemented as repeated
single inserts. Not only is the obsolete capacity structure still present, on top of that
a very inefficient insertion is implemented, where for every element a complete re-
allocate is performed.

This type of quality degradation can be found in many places in software repos-
itories.

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Figure 6: Bloating causes more bloating

One of the bloating problems is that bloating causes more bloating, as shown
in figure 6. Software engineering principles force us to decompose large modules
in smaller modules. ”Good” modules are somewhere between 100 and 1000 lines
of code. So where non-bloated functionality fits in one module, the bloated version
is too large and needs to be decomposed in smaller modules. This decomposition
adds some interfacing overhead. Unfortunately the same causes of overhead also
apply to this decomposition overhead, which means again additional code.

All this additional code does not only cost additional development, test and
maintenance effort, it also has run time costs: CPU and memory usage. In other
words the system performance degrades, in some cases also with an order of magnitude.
When the resulting system performance is unacceptable then repair actions are
needed. The most common repair actions involve the creation of even more code:
memory pools, caches, and shortcuts for critical functions. This is shown in figure 7.

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 5

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Figure 7: causes even more bloating...

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 6

4 What if we are able to reduce the bloating?

Lets assume that we are able to reduce the code size with a factor 5, in other
words we can make an equivalent product with only 20% of the code size. Such
a reduction would have a tremendous impact on the creation and the life-cycle
afterwards of the product. Figure 8 shows some of the consequences.

extrovert benefitsintrovert benefits

code size
reduced with

factor 5

implementation

maintenance

investment

faults

overview

market response

time

reliability

ease of usecommunication cycle time

organization overhead

20%

20%

core

function

generic

legacy

"h
o

w
"

d
o

g
m

a
s

"w
h

a
t"

core function

Figure 8: What if we remove half of the bloating?

The immediate consequence is that all parameters which are in first approx-
imation proportional with the code size, will be reduced with the same factor.
Imagine the impact of having 5 times less faults on the reliability or on the time
needed for integration!

The creation crew and the maintenance crew decrease also proportional, which
eases the communication tremendously. The organization also becomes much
simpler and more direct. The housing demands are smaller, the crew fits in a
smaller location. Figure 9 shows the relation between crew size, organization and
housing.

1 2 4 8 16 32 64

room

floor

128 256

building

512

campus

Figure 9: Impact of size on organization, location, process

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 7

Of course a reduction with a factor 5 is a tremendous challenge, a plan to
attack the bloating is discussed in section 5. To achieve such an improvement the
estimated overhead (circa 90% of the code) has to be reduced with a factor 8, and
the core code has to be reduced with about 15% at the same time.

less

code

better

overview

better design

integral

understanding

faster

prototyping

better

specification

faster

feedback

concern

locality

expression

power

appropriate

technology

change

locality

refactoring

redesign

viable

same type of diagram can be made for less people
(less communication, space, organization, bureaucracy)

Figure 10: Anti bloating multiplier

If we are able to reverse the trend of bloating, an anti bloating multiplier effect
will help us, as shown in figure 10. Less code helps in many ways to reduce
the code even more: less code enables faster prototyping, which helps to get
early feedback, which in turn improves the specification, and a better specification
reduces the amount of code! Similar circular effects are obtained via the use of
right technology, via refactoring and through improved overview.

The same multiplier effect is also present when we are able to reduce the crew
size. Less people means easier communication, less distance, less need for bureau-
cratic control, less organizational overhead, all of them again reducing the amount
of people needed!

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 8

5 How to attack the bloating?

The bloating must be attacked by coping with all the different causes of bloating
as discussed in section 2. Figure 11 summarizes all different approaches that can
be used to attack these different causes.

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

overhead

value

legend

system

engineering

software

engineering

aggressive

refactoring

incremental

approach

agile

attitude

right

technology

early feedback

system

design

CAFCR

iteration

extensive

regression tests retirement

policy

software

design

Figure 11: How to reduce bloating

5.1 Improving the specification

The systems engineering discipline is a matured discipline, for instance in the
military and aero space domain, see for instance: [3] and [5]. Deploying methods
and checklists from this discipline can help to improve specifications.

A major cause of poor specifications is late feedback, both from the customer
side as well as from the technical cost and feasibility side. All modern product
creation processes stress the importance of early feedback or an incremental approach,
see [2], [1] and [4].

In [9] the CAFCR model is introduced as a means for architectural reasoning.
From specification point of view it is important that the specification in the Functional
view fits in the context of the Customer objectives, Application, Conceptual and
Realization views. The architectural reasoning method is based upon fast iteration
over the views and the different levels of abstraction.

5.2 Improving the design

One of the frequent design pitfalls is the dominance of a single decomposition.
The consequence is that many other design dimensions are insufficiently taken into

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 9

poor specification ("what")

system engineering: mature discipline, checklists, literature

CAFCR iteration, early feedback: learn why

Customer

objectives

Application Functional Conceptual Realization

solutionproblem

bottom line

usability

implementation

decisions

sy
st
em

le
ve
l

d
et
ai
l

le
ve
l

Figure 12: Improving the specification

account. The architectural reasoning method as described in [9] emphasizes the
need for multiple views and methods in order to cope with many relevant design
dimensions.

Figure 13 provides an overview of the architectural reasoning method based on
the CAFCR model. Core to the deployment of the method is the availability of a
rich collection of submethods, such that for each problem an approach is available,
or at least that inspiration can be obtained from this rich set.

System design, software design and software engineering are closely related
disciplines. System design can be tackled by means of CAFCR, as mentioned
above. Software design requires sufficient conceptual skills: determining the concepts
to be used: which generic functionality can (must) be factored out, where are
specific solutions required. Finally good software engineering practices (naming
conventions, tools, configuration management, et cetera) help to avoid commonly
known mistakes. Trivial misnaming mistakes may cause lots of bloating, due to
not recognizing concepts or structures.

5.3 Avoiding the genericity trap

Many software developers and architects love to create powerful and generic solutions.
A truly powerful and generic solution can indeed be marvelous. Unfortunately
these type of solutions often emerge after a lot of hard work and many trials. The
mistake made by many of us is that we try to invent this ideal solution out of
nothing, while the problem and solution know how is still rudimentary.

To avoid this genericity trap frequent feedback is essential. Understanding of

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 10

explore

specific details

submethods

per view

Customer

objectives

Application Functional Conceptual Realizationarchitecture

decomposition

integration

via qualities

safety

performance

story case
analyse

design

design
analyse

design

a priori solution know howmarket

vision

Philips operational view

diagnosis

time efficient
throughput processing

library

diagnostic

quality

image

quality IQ spec

pixel

depth

CPU

budget

typical

case

standard

workstationcommon

console
memory limit

BoM Moore's

law

purchase

price
CoOeconomic

sound

render

engine

memory

budget

reasoning

+ keydrivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

ans many more

See: Architectural Reasoning http://www.extra.research.philips.com/natlab/sysarch/ArchitecturalReasoning.html

Figure 13: Use multiple views and methods

the problem as well as the solution is key to being effective. Learning via feedback
is a quick way of building up this understanding. Waterfall methods all suffer
from late feedback, see figure 14 for a visualization of the influence of feedback
frequency on project elapsed time.

A more practical way to obtain more powerful and generic solutions is to
start with learning. In practice after 3 initial implementations (often with some
copy/paste based reuse), sufficient know how is available to factor out the generic
part, see figure 15

5.4 Match solution technology with problem

The size of the functionality itself can often reduced by using the appropriate
technology for the specific type of problem. Figure 16 shows some different types
of technologies and the potential technology choice which can reduce the amount
of code required to tackle the problem.

For user interface prototyping dedicated user interface or application gener-
ators are valuable tools. Many non hard real time problems of all kind of natures
(textual, algorithmic, networking) can be expressed in high level problem terms
by high level languages such as Python. When programming in Python much less
code is required for all kinds of solution technology oriented needs.

For small hard real time or performance critical functions (for instance audio or
image processing, or motion control) straightforward hand optimization is sometimes
the most effective. All kinds of high level constructs in this problem domain trigger

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 11

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 14: Feedback (3)

make
& use 1

make (copy,
paste, modify)

& use 2

make (copy,
paste, modify)

& use 3
refactor
& reuse

time

learn domain, technology, pitfalls,

keydrivers, requirements, costs

harvest and

extend

heuristic: use 3 times before factoring out the generic parts

Figure 15: Lesson learned about reuse

the bloating process due to all additional measures needed to meet performance or
timing needs.

Highly repeatable problems, with small variations, can be addressed by specialized
generators. Development of dedicated toolkits for this class of problems is often
highly efficient in terms of amount of code and cost.

5.5 Agility instead of dogmatism

An agile attitude is needed to avoid dogmatic application of all kinds of architecture
rules. In [8] recommendations are given to achieve a light weight architecture.

Figure 17 from [8] shows the tension between the different objectives of an
architecture. Flexibility requires agility, while manageability requires more control
through architecture rules. Organizational growth or maturity often involves an
increase of manageability, which can backfire if this translates in dogmatism.

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 12

highly repeatable problem

non hard real time textual, algorithmic, networking: Python

UI prototyping: GUI editor/generator

small hard real-time or extremely performance critical

dedicated generator tools

hand optimized

Figure 16: Examples of ”right” technology choices

Ef
fe

ct
iv

en
es

s

architecture
weight

(for dynamic markets and fast changing technologies)

very low low medium high

overall

effectiveness

Manageability

Flexibility

= Flexibility * Manageability

Figure 17: Keep the architecture weight low

5.6 Reduce unused code

The first step in removing unused code is to have a retirement policy: how is
retirement communicated, how long are old features supported, support for obsoles-
cence detection et cetera.

When features are retired a cleanup of the associated code is required. Quite
some drive is required to actually do this, an aggressive refactoring mentality is
quite helpful to achieve this.

As described in the problem analysis the cleanup is often not done out of fear:
what might happen somewhere else in the code if we remove this? Extensive
regression test suites help to detect this kind of problems and help to remove the
fear of cleanup.

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 13

support for unused legacy code

aggressive refactoring

extensive regression tests

retirement policy make explicit what can

not be used anymore

cleanup

reduce fear

reduce surprises

Figure 18: Reduce unused code

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 14

6 Acknowledgements

Wim Mosterman reminded me of the “shit propagation” effect, which causes a
significant amount of bloating. Nick Maclaren pointed out that factoring out generic
functionality during design (not during programming!) is an effective anti-bloat
measure. Tom Hoogenboom for providing feedback.

References

[1] B.W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, May 1988.

[2] Thomas Gilb. Evolutionary object management. http://www.gilb.
com/Download/EVOART95.ZIP, 1996.

[3] INCOSE. International council on systems engineering. http://www.
incose.org/toc.html, 1999. INCOSE publishes many interesting
articles about systems engineering.

[4] Philippe B. Kruchten. A rational development process. Crosstalk 9, pages
11–16, July 1996.

[5] James N. Martin. Systems Engineering Guidebook. CRC Press, Boca Raton,
Florida, 1996.

[6] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[7] Gerrit Muller. Case study: Medical imaging; from toolbox to product to
platform. http://www.gaudisite.nl/MedicalImagingPaper.
pdf, 2000.

[8] Gerrit Muller. Light weight architectures; the way of the future? http:
//www.gaudisite.nl/info/LightWeightArchitecting.
info.html, 2001.

[9] Gerrit Muller. Architectural reasoning explained. http://www.
gaudisite.nl/ArchitecturalReasoningBook.pdf, 2002.

History
Version: 1.2, date: July 7, 2003 changed by: Gerrit Muller

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 15

http://www.gilb.com/Download/EVOART95.ZIP
http://www.gilb.com/Download/EVOART95.ZIP
http://www.incose.org/toc.html
http://www.incose.org/toc.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf

• added factoring out generic fucntionality during design
• changed status to ”finished”

Version: 1.1, date: June 4, 2003 changed by: Gerrit Muller
• added ”shit propagation”

Version: 1.0, date: June 4, 2003 changed by: Gerrit Muller
• updated bloating visualization figures
• added reuse heuristic
• added text
• added reduce unused diagram
• changed status to draft

Version: 0.2, date: June 2, 2003 changed by: Gerrit Muller
• added figure "reduce what"
• added figures how to reduce

Version: 0.1, date: May 28, 2003 changed by: Gerrit Muller
• added abstract
• added stub sections "what if...", "how to attack..."

Version: 0, date: May 16, 2003 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
Exploration of the bloating of software
October 3, 2016 version: 1.2

Buskerud University College

page: 16

	Introduction
	Module level bloating
	Bloating causes more bloating
	What if we are able to reduce the bloating?
	How to attack the bloating?
	Improving the specification
	Improving the design
	Avoiding the genericity trap
	Match solution technology with problem
	Agility instead of dogmatism
	Reduce unused code

	Acknowledgements

